iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-030-78710-3_30
A Framework for Evaluating Myocardial Stiffness Using 3D-Printed Heart Phantoms | SpringerLink
Skip to main content

A Framework for Evaluating Myocardial Stiffness Using 3D-Printed Heart Phantoms

  • Conference paper
  • First Online:
Functional Imaging and Modeling of the Heart (FIMH 2021)

Abstract

MRI-driven computational modeling is increasingly used to simulate in vivo cardiac mechanical behavior and estimate subject-specific myocardial stiffness. However, in vivo validation of these estimates is exceedingly difficult due to the lack of a known ground-truth in vivo myocardial stiffness. We have developed 3D-printed heart phantoms of known myocardium-mimicking stiffness and MRI relaxation properties and incorporated the heart phantoms within a highly controlled MRI-compatible setup to simulate in vivo diastolic filling. The setup enables the acquisition of experimental data needed to evaluate myocardial stiffness using computational constitutive modeling: phantom geometry, loading pressures, boundary conditions, and filling strains. The pressure-volume relationship obtained from the phantom setup was used to calibrate an in silico model of the heart phantom undergoing simulated diastolic filling. The model estimated stiffness was compared to a ground-truth stiffness obtained from uniaxial tensile testing. Ultimately, the setup is designed to enable extensive validation of MRI and FEM-based myocardial stiffness estimation frameworks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Heidenreich, P.A., et al.: Forecasting the impact of heart failure in the united states. Circ. Heart Fail. 6, 606–619 (2013)

    Google Scholar 

  2. Sakata, Y., Ohtani, T., Takeda, Y., Yamamoto, K., Mano, T.: Left ventricular stiffening as therapeutic target for heart failure with preserved ejection fraction. Circ. J. 77, 886–892 (2013)

    Article  Google Scholar 

  3. Peirlinck, M., et al.: Using machine learning to characterize heart failure across the scales. Biomech. Model. Mechanobiol. 18, 1987–2001 (2019)

    Article  Google Scholar 

  4. Burkhoff, D., Mirsky, I., Suga, H.: Assessment of systolic and diastolic ventricular properties via pressure-volume analysis: a guide for clinical, translational, and basic researchers. Am. J. Physiol. Heart Circ. Physiol. 289, H501–512 (2005)

    Google Scholar 

  5. Khan, S., Fakhouri, F., Majeed, W., Kolipaka, A.: Cardiovascular magnetic resonance elastography: a review. NMR Biomed. 31, (2018)

    Article  Google Scholar 

  6. Wang, V.Y., Nielsen, P.M.F., Nash, M.P.: Image-based predictive modeling of heart mechanics. Annu. Rev. Biomed. Eng. 17, 351–383 (2015)

    Article  Google Scholar 

  7. Cork, T.E., Perotti, L.E., Verzhbinsky, I.A., Loecher, M., Ennis, D.B.: In: Coudière, Y., Ozenne, V., Vigmond, E., Zemzemi, N. (eds.) Functional Imaging and Modeling of the Heart 2019. LNCS, vol. 11504, pp. 177–186. Springer, Cham (2019)

    Google Scholar 

  8. Dual, S.A., et al.: Ultrasonic sensor concept to fit a ventricular assist device cannula evaluated using geometrically accurate heart phantoms. Artif. Organs 43, 467–477 (2019)

    Article  Google Scholar 

  9. Schneider, F., Draheim, J., Kamberger, R., Wallrabe, U.: Process and material properties of polydimethylsiloxane (PDMS) for optical MEMS. Sens. Actuators A Phys. 151, 95–99 (2009)

    Article  Google Scholar 

  10. Johnston, I.D., McCluskey, D.K., Tan, C.K.L., Tracey, M.C.: Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering. J. Micromech. Microeng. 24, (2014)

    Article  Google Scholar 

  11. Peirlinck, M., et al.: Kinematic boundary conditions substantially impact in silico ventricular function. Int. J. Numer. Methods Biomed. Eng. 35, (2019)

    Article  Google Scholar 

  12. Jones, E., Oliphant, T., Peterson, P.: SciPy: open source scientific tools for python (2001)

    Google Scholar 

  13. Sommer, G., et al.: Biomechanical properties and microstructure of human ventricular myocardium. Acta Biomater. 24, 172–192 (2015)

    Article  Google Scholar 

  14. von Knobelsdorff-Brenkenhoff, F., et al.: Myocardial T1 and T2 mapping at 3 T: reference values, influencing factors and implications. J. Cardiovasc. Magn. Reson. 15, 53 (2013)

    Article  Google Scholar 

  15. Palchesko, R.N., Zhang, L., Sun, Y., Feinberg, A.W.: Development of polydimethylsiloxane substrates with tunable elastic modulus to study cell mechanobiology in muscle and nerve. PLoS ONE 7, (2012)

    Article  Google Scholar 

  16. Hopf, R., Bernardi, L., Menze, J., Zündel, M., Mazza, E., Ehret, A.E.: Experimental and theoretical analyses of the age-dependent large-strain behavior of Sylgard 184 (10:1) silicone elastomer. J. Mech. Behav. Biomed. Mater. 60, 425–437 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH R01 HL131823 to DBE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fikunwa O. Kolawole .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kolawole, F.O. et al. (2021). A Framework for Evaluating Myocardial Stiffness Using 3D-Printed Heart Phantoms. In: Ennis, D.B., Perotti, L.E., Wang, V.Y. (eds) Functional Imaging and Modeling of the Heart. FIMH 2021. Lecture Notes in Computer Science(), vol 12738. Springer, Cham. https://doi.org/10.1007/978-3-030-78710-3_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78710-3_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78709-7

  • Online ISBN: 978-3-030-78710-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics