iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-030-76983-3_18
A Lazy Query Scheme for Reachability Analysis in Petri Nets | SpringerLink
Skip to main content

A Lazy Query Scheme for Reachability Analysis in Petri Nets

  • Conference paper
  • First Online:
Application and Theory of Petri Nets and Concurrency (PETRI NETS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12734))

  • 624 Accesses

Abstract

In recent works we proposed a lazy algorithm for reachability analysis in networks of automata. This algorithm is optimistic and tries to take into account as few automata as possible to perform its task. In this paper we extend the approach to the more general settings of reachability analysis in unbounded Petri nets and reachability analysis in bounded Petri nets with inhibitor arcs. We consider we are given a reachability algorithm and we organize queries to it on bigger and bigger nets in a lazy manner, trying thus to consider as few places and transitions as possible to make a decision. Our approach has been implemented in the Romeo model checker and tested on benchmarks from the model checking contest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    It uses the classical list data structure. The length of a list L is given by length(L). The \(k^{th}\) element of L is L[k].

  2. 2.

    64bits Linux binaries for Romeo and converters from pnml (MCC) to cts (Romeo), and full results are at http://lara.rts-software.org/.

References

  1. Akshay, S., Chakraborty, S., Das, A., Jagannath, V., Sandeep, S.: On Petri nets with hierarchical special arcs. In: CONCUR, pp. 40:1–40:17 (2017)

    Google Scholar 

  2. Behrmann, G., David, A., Larsen, K.G.: A tutorial on UPPAAL. In: International School on Formal Methods for the Design of Computer, Communication and Software Systems, pp. 200–236 (2004)

    Google Scholar 

  3. Bonet, B., Haslum, P., Hickmott, S., Thiébaux, S.: Directed unfolding of Petri nets. ToPNOC 1(1), 172–198 (2008)

    Google Scholar 

  4. Chatain, T., Paulevé, L.: Goal-driven unfolding of Petri nets. In: CONCUR, pp. 18:1–18:16 (2017)

    Google Scholar 

  5. Couvreur, J.-M., Thierry-Mieg, Y.: Hierarchical decision diagrams to exploit model structure. In: Wang, F., (ed.) FORTE, pp. 443–457 (2005)

    Google Scholar 

  6. Esparza, J., Römer, S., Vogler, W.: An improvement of McMillan’s unfolding algorithm. In: TACAS, pp. 87–106 (1996)

    Google Scholar 

  7. Holzmann, G.J., Peled, D.: An improvement in formal verification. In: FORTE, pp. 197–211 (1994)

    Google Scholar 

  8. Jezequel, L., Lime, D.: Lazy reachability analysis in distributed systems. In: CONCUR, pp. 17:1–17:14 (2016)

    Google Scholar 

  9. Jezequel, L., Lime, D.: Let’s be lazy, we have time - or, lazy reachability analysis for timed automata. In: FORMATS, pp. 247–263 (2017)

    Google Scholar 

  10. Kordon, F., et al.: Complete Results for the 2020 Edition of the Model Checking Contest, June 2020. http://mcc.lip6.fr/2020/results.php

  11. Kordon, F., et al.: MCC’2015 - the fifth model checking contest. ToPNOC 11, 262–273 (2016)

    MathSciNet  Google Scholar 

  12. Rao Kosaraju, S.: Decidability of reachability in vector addition systems (preliminary version). In: Lewis, H.R., Simons, B.B., Burkhard, W.A., Landweber, L.H. (eds.) STOC, pp. 267–281. ACM (1982)

    Google Scholar 

  13. Lambert, J.-L.: A structure to decide reachability in Petri nets. TCS 99(1), 79–104 (1992)

    Article  MathSciNet  Google Scholar 

  14. Lehmann, A., Lohmann, N., Wolf, K.: Stubborn sets for simple linear time properties. In: ICATPN, pp. 228–247 (2012)

    Google Scholar 

  15. Leroux, J., Schmitz, S.: Demystifying reachability in vector addition systems. In: LICS, pp. 56–67. IEEE Computer Society (2015)

    Google Scholar 

  16. Lime, D., Roux, O.H., Seidner, C., Traonouez, L.-M.: Romeo: a parametric model-checker for Petri nets with stopwatches. In: TACAS, pp. 54–57 (2009)

    Google Scholar 

  17. Mayr, E.W.: An algorithm for the general Petri net reachability problem. SIAM J. Comput. 13(3), 441–460 (1984)

    Article  MathSciNet  Google Scholar 

  18. McMillan, K.: Using unfoldings to avoid the state explosion problem in the verification of asynchronous circuits. In: CAV, pp. 164–177 (1993)

    Google Scholar 

  19. Miner, A., Babar, J.: Meddly: multi-terminal and edge-valued decision diagram library. In: QEST, pp. 195–196 (2010)

    Google Scholar 

  20. Reinhardt, K.: Reachability in Petri nets with inhibitor arcs. ENTCS 223, 239–264 (2008)

    MATH  Google Scholar 

  21. Weiser, M.: Program slicing. IEEE Trans. Softw. Eng. SE-10(4), 352–357 (1984)

    Google Scholar 

  22. Wolf, K.: Running LoLA 2.0 in a model checking competition. ToPNOC 11, 274–285 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loïg Jezequel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jezequel, L., Lime, D., Sérée, B. (2021). A Lazy Query Scheme for Reachability Analysis in Petri Nets. In: Buchs, D., Carmona, J. (eds) Application and Theory of Petri Nets and Concurrency. PETRI NETS 2021. Lecture Notes in Computer Science(), vol 12734. Springer, Cham. https://doi.org/10.1007/978-3-030-76983-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76983-3_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76982-6

  • Online ISBN: 978-3-030-76983-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics