iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-030-76657-3_27
An Algebraic Framework for Out-of-Core Hierarchical Segmentation Algorithms | SpringerLink
Skip to main content

An Algebraic Framework for Out-of-Core Hierarchical Segmentation Algorithms

  • Conference paper
  • First Online:
Discrete Geometry and Mathematical Morphology (DGMM 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12708))

Abstract

Binary partition hierarchies and minimum spanning trees are key structures for numerous hierarchical analysis methods, as those involved in computer vision and mathematical morphology. In this article, we consider the problem of their computation in an out-of-core manner, i.e., by minimizing the size of the data structures that are simultaneously needed at the different computation steps. Out-of-core algorithms are necessary when the data are too large to fit entirely in the main memory of the computer, which can be the case with very large images in 2-, 3-, or higher dimension space. We propose a new algebraic framework composed of four main operations on hierarchies: edge-addition, select, insert, and join. Based on this framework, we propose and establish the correctness of an out-of-core calculus for binary partition hierarchies and for minimum spanning trees. First applications to image processing suggest the practical efficiency of this calculus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chierchia, G., Perret, B.: Ultrametric fitting by gradient descent. In: NeurIPS, pp. 3181–3192 (2019)

    Google Scholar 

  2. Cousty, J., Najman, L., Kenmochi, Y., Guimarães, S.: Hierarchical segmentations with graphs: quasi-flat zones, minimum spanning trees, and saliency maps. JMIV 60(4), 479–502 (2018)

    Article  MathSciNet  Google Scholar 

  3. Cousty, J., Najman, L., Perret, B.: Constructive links between some morphological hierarchies on edge-weighted graphs. In: ISMM, pp. 86–97 (2013)

    Google Scholar 

  4. Farabet, C., Couprie, C., Najman, L., LeCun, Y.: Learning hierarchical features for scene labeling. TPAMI 35(8), 1915–1929 (2012)

    Article  Google Scholar 

  5. Gazagnes, S., Wilkinson, M.H.: Distributed component forests in 2-D: hierarchical image representations suitable for tera-scale images. IJPRAI 33(11), 1940012 (2019)

    Google Scholar 

  6. Gigli, L., Velasco-Forero, S., Marcotegui, B.: On minimum spanning tree streaming for hierarchical segmentation. PRL 138, 155–162 (2020)

    Article  Google Scholar 

  7. Götz, M., Cavallaro, G., Geraud, T., Book, M., Riedel, M.: Parallel computation of component trees on distributed memory machines. TPDS 29(11), 2582–2598 (2018)

    Google Scholar 

  8. Guimarães, S., Kenmochi, Y., Cousty, J., Patrocinio, Z., Najman, L.: Hierarchizing graph-based image segmentation algorithms relying on region dissimilarity: the case of the Felzenszwalb-Huttenlocher method. MMTA 2(1), 55–75 (2017)

    Google Scholar 

  9. Havel, J., Merciol, F., Lefèvre, S.: Efficient tree construction for multiscale image representation and processing. J. Real-Time Image Proc. 16(4), 1129–1146 (2016). https://doi.org/10.1007/s11554-016-0604-0

    Article  Google Scholar 

  10. Kazemier, J.J., Ouzounis, G.K., Wilkinson, M.H.: Connected morphological attribute filters on distributed memory parallel machines. In: ISMM, pp. 357–368 (2017)

    Google Scholar 

  11. Maninis, K.K., Pont-Tuset, J., Arbeláez, P., Van Gool, L.: Convolutional oriented boundaries: from image segmentation to high-level tasks. TPAMI 40(4), 819–833 (2017)

    Article  Google Scholar 

  12. Najman, L., Cousty, J., Perret, B.: Playing with kruskal: algorithms for morphological trees in edge-weighted graphs. In: ISMM, pp. 135–146 (2013)

    Google Scholar 

  13. Najman, L., Schmitt, M.: Geodesic saliency of watershed contours and hierarchical segmentation. TPAMI 18(12), 1163–1173 (1996)

    Article  Google Scholar 

  14. Perret, B., Cousty, J., Guimarães, S.J.F., Kenmochi, Y., Najman, L.: Removing non-significant regions in hierarchical clustering and segmentation. PRL 128, 433–439 (2019)

    Article  Google Scholar 

  15. Ronse, C.: Partial partitions, partial connections and connective segmentation. JMIV 32(2), 97–125 (2008)

    Article  MathSciNet  Google Scholar 

  16. Ronse, C.: Ordering partial partitions for image segmentation and filtering: Merging, creating and inflating blocks. JMIV 49(1), 202–233 (2014)

    Article  MathSciNet  Google Scholar 

  17. Salembier, P., Garrido, L.: Binary partition tree as an efficient representation for image processing, segmentation, and information retrieval. TIP 9(4), 561–576 (2000)

    Google Scholar 

  18. Soille, P.: Constrained connectivity for hierarchical image partitioning and simplification. TPAMI 30(7), 1132–1145 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the ANR under grant ANR-20-CE23-0019.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cousty, J., Perret, B., Phelippeau, H., Carneiro, S., Kamlay, P., Buzer, L. (2021). An Algebraic Framework for Out-of-Core Hierarchical Segmentation Algorithms. In: Lindblad, J., Malmberg, F., Sladoje, N. (eds) Discrete Geometry and Mathematical Morphology. DGMM 2021. Lecture Notes in Computer Science(), vol 12708. Springer, Cham. https://doi.org/10.1007/978-3-030-76657-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76657-3_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76656-6

  • Online ISBN: 978-3-030-76657-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics