Abstract
mHealth applications provide a huge potential to integrate neuropsychological rehabilitation into the everyday life of patients with executive dysfunctions by supporting them in daily activities and achieving personal goals. In the context of intervention studies it is important to gain insight in the usage of these applications by patients as an additional measurement beside neuropsychological pre- and post-tests. On the other hand, measuring usage of mobile applications constitutes a privacy risk for users. In this article the neuropsychological intervention study is described and a concept for privacy-preserving metrics with a focus on data minimization is derived from research questions. These considerations are then incorporated in a thorough privacy by design and privacy by default design process for the mHealth app.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aschenbrenner, S., Tucha, O., Lange, K.W.: Regensburger Wortflüssigkeits-Test. Hogrefe (2000)
Atkinson, R.C., Shiffrin, R.M.: The control of short-term memory. Sci. Am. 225(2), 82–91 (1971)
Baddeley, A.D., Hitch, G.: Working memory. In: Bower, G.H. (ed.) Psychology of Learning and Motivation, vol. 8, pp. 47–89. Academic Press (1974). https://doi.org/10.1016/S0079-7421(08)60452-1, http://www.sciencedirect.com/science/article/pii/S0079742108604521
Bertens, D., Fasotti, L., Boelen, D.H., Kessels, R.P.: A randomized controlled trial on errorless learning in goal management training: study rationale and protocol. BMC Neurol. 13(1), 64 (2013). https://doi.org/10.1186/1471-2377-13-64
Bonawitz, K., et al.: Practical secure aggregation for privacy preserving machine learning. Cryptology ePrint Archive, Report 2017/281 (2017). https://eprint.iacr.org/2017/281
Brooke, J.: SUS - a quick and dirty usability scale. Usability Eval. Ind. 189(194), 4–7 (1996). http://www.usabilitynet.org/trump/documents/Suschapt.doc
Cafazzo, J.A., Casselman, M., Hamming, N., Katzman, D.K., Palmert, M.R.: Design of an mHealth App for the self-management of adolescent type 1 diabetes: a pilot study. J. Med. Internet Res. 14(3), e70 (2012). https://doi.org/10.2196/jmir.2058
Colesky, M., Hoepman, J.H., Hillen, C.: A critical analysis of privacy design strategies. In: 2016 IEEE Security and Privacy Workshops (SPW), pp. 33–40 (2016). https://doi.org/10.1109/SPW.2016.23
Colesky, M., et al.: Privacy patterns. https://privacypatterns.org/. Accessed 10 June 2020
Dwork, C.: Differential privacy: a survey of results. In: Agrawal, M., Du, D., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79228-4_1
Emmanouel, A.: Look at the frontal side of life: anterior brain pathology and everyday executive function: assessment approaches and treatment. Ph.D. thesis, Radboud University (2017). http://repository.ubn.ru.nl/handle/2066/166754
Regulation (EU) 2016/679 of the European parliament and of the council of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing directive 95/46/EC (general data protection regulation). Official Journal of the European Union L119, pp. 1–88, May 2016. http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2016:119:TOC
Gabel, A., Ertas, F., Pleger, M., Schiering, I., Müller, S.: Privacy-preserving metrics for an mHealth App in the context of neuropsychological studies. In: Proceedings of the 13th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 5: HEALTHINF, pp. 166–177. SciTePress (2020). https://doi.org/10.5220/0008982801660177, https://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0008982801660177
Gabel, A., Schiering, I.: Privacy patterns for pseudonymity. In: Kosta, E., Pierson, J., Slamanig, D., Fischer-Hübner, S., Krenn, S. (eds.) Privacy and Identity 2018. IAICT, vol. 547, pp. 155–172. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16744-8_11
Gabel, A., Schiering, I., Müller, S.V., Ertas, F.: mHealth applications for goal management training - privacy engineering in neuropsychological studies. In: Hansen, M., Kosta, E., Nai-Fovino, I., Fischer-Hübner, S. (eds.) Privacy and Identity 2017. IAICT, vol. 526, pp. 330–345. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92925-5_22
Garcia-Ceja, E., Osmani, V., Mayora, O.: Automatic stress detection in working environments from smartphones’ accelerometer data: a first step. IEEE J. Biomed. Health Inform. 20(4), 1053–1060 (2016). https://doi.org/10.1109/JBHI.2015.2446195
Goodfellow, I., et al.: Generative adversarial nets. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 27, pp. 2672–2680. Curran Associates, Inc. (2014). https://papers.nips.cc/paper/5423-generative-adversarial-nets
Grünerbl, A., et al.: Smartphone-based recognition of states and state changes in bipolar disorder patients. IEEE J. Biomed. Health Inform. 19(1), 140–148 (2015). https://doi.org/10.1109/JBHI.2014.2343154
Hafiz, M.: A pattern language for developing privacy enhancing technologies. Softw. Pract. Exp. 43(7), 769–787 (2013)
Hansen, M., Jensen, M., Rost, M.: Protection goals for privacy engineering. In: 2015 IEEE Security and Privacy Workshops, pp. 159–166, May 2015. https://doi.org/10.1109/SPW.2015.13
Härting, C., Markowitsch, H.J., Neufeld, H., Calabrese, P., Deisinger, K., Kessler, J.: Wechsler Gedächtnistest - Revidierte Fassung: WMS-R (2000)
Huckvale, K., Prieto, J.T., Tilney, M., Benghozi, P.J., Car, J.: Unaddressed privacy risks in accredited health and wellness apps: a cross-sectional systematic assessment. BMC Med. 13, 214 (2015). https://doi.org/10.1186/s12916-015-0444-y
Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of StyleGAN. In: The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020
Kiresuk, T.J., Sherman, R.E.: Goal attainment scaling: a general method for evaluating comprehensive community mental health programs. Community Mental Health J. 4(6), 443–453 (1968). https://doi.org/10.1007/BF01530764
Kleiman, E.M., et al.: Digital phenotyping of suicidal thoughts, July 2018. https://doi.org/10.1002/da.22730, https://onlinelibrary.wiley.com/doi/abs/10.1002/da.22730
Knorr, K., Aspinall, D.: Security testing for Android mHealth apps. In: 2015 IEEE Eighth International Conference on Software Testing, Verification and Validation Workshops (ICSTW), pp. 1–8, April 2015. https://doi.org/10.1109/ICSTW.2015.7107459
Levine, B., et al.: Rehabilitation of executive functioning: an experimental-clinical validation of goal management training. J. Int. Neuropsychol. Soc. 6(3), 299–312 (2000). https://doi.org/10.1017/S1355617700633052
Levine, B., et al.: Rehabilitation of executive functioning: an experimental-clinical validation of goal management training. J. Int. Neuropsychol. Soc. 6(3), 299–312 (2000). https://doi.org/10.1017/S1355617700633052, https://www.cambridge.org/core/journals/journal-of-the-international-neuropsychological-society/article/rehabilitation-of-executive-functioning-an-experimentalclinical-validation-of-goal-management-training/79A6CAE70C3703008D083F64F34246D8
Levine, B., et al.: Rehabilitation of executive functioning in patients with frontal lobe brain damage with goal management training. Front. Hum. Neurosci. 5 (2011). https://doi.org/10.3389/fnhum.2011.00009, https://www.frontiersin.org/articles/10.3389/fnhum.2011.00009/full
Li, N., Li, T., Venkatasubramanian, S.: t-Closeness: privacy beyond k-anonymity and l-diversity. In: 2007 IEEE 23rd International Conference on Data Engineering, pp. 106–115, April 2007. https://doi.org/10.1109/ICDE.2007.367856, ISSN 2375-026X
Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: L-diversity: privacy beyond k-anonymity. ACM Trans. Knowl. Discov. Data 1(1), 3-es (2007). https://doi.org/10.1145/1217299.1217302
Martínez-Pérez, B., de la Torre-Díez, I., López-Coronado, M.: Privacy and security in mobile health apps: a review and recommendations. J. Med. Syst. 39(1), 1–8 (2014). https://doi.org/10.1007/s10916-014-0181-3
McMahan, B., Ramage, D., Talwar, K., Zhang, L.: Learning differentially private recurrent language models. In: International Conference on Learning Representations (ICLR) (2018). https://openreview.net/pdf?id=BJ0hF1Z0b
Mense, A., Steger, S., Sulek, M., Jukic-Sunaric, D., Mészáros, A.: Analyzing privacy risks of mHealth applications. Stud. Health Technol. Inform. 221, 41–45 (2016). https://doi.org/10.3233/978-1-61499-633-0-41
Mohr, D.L., Zhang, M., Schueller, S.M.: Personal sensing: understanding mental health using ubiquitous sensors and machine learning. Annu. Rev. Clin. Psychol. 13, 23–47 (2017). https://doi.org/10.1146/annurev-clinpsy-032816-044949
Müller, S.V., Ertas, F., Aust, J., Gabel, A., Schiering, I.: Kann eine mobile Anwendung helfen abzuwaschen? Zeitschrift für Neuropsychologie 30(2), 123–131 (2019). https://doi.org/10.1024/1016-264X/a000256
Müller, S.V.: Störungen der Exekutivfunktionen. Hogrefe (2013)
Onnela, J.P., Rauch, S.L.: Harnessing smartphone-based digital phenotyping to enhance behavioral and mental health. Neuropsychopharmacology 41(7), 1691–1696 (2016). https://doi.org/10.1038/npp.2016.7
Papageorgiou, A., Strigkos, M., Politou, E., Alepis, E., Solanas, A., Patsakis, C.: Security and privacy analysis of mobile health applications: the alarming state of practice. IEEE Access 6, 9390–9403 (2018). https://doi.org/10.1109/ACCESS.2018.2799522
Reitan, R.: Trail-Making Test. Reitan Neuropsychology Laboratory, Arizona (1979)
Robertson, I.: Goal Management Training: A Clinical Manual. PsyConsult, Cambridge (1996)
Schneider, W., Shiffrin, R.M.: Controlled and automatic human information processing: I. Detection, search, and attention. Psychol. Rev. 84(1), 1–66 (1977). https://doi.org/10.1037/0033-295X.84.1.1
Stamenova, V., Levine, B.: Effectiveness of goal management training® in improving executive functions: a meta-analysis. Neuropsychol. Rehabil., 1–31 (2018). https://doi.org/10.1080/09602011.2018.1438294
Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertainty Fuzziness Knowl.-Based Syst. (2012). https://doi.org/10.1142/S0218488502001648, http://www.worldscientific.com/doi/abs/10.1142/S0218488502001648
Treacy, C., McCaffery, F.: Data security overview for medical mobile apps. Int. J. Adv. Secur. 9(3 & 4), 2016 (2016)
Tucha, O., Lange, K.W.: TL-D: Turm von London - Deutsche Version (2004)
Wilson, B.A., Alderman, N., Burgess, P.W., Emslie, H., Evans, J.J.: Behavioural Assessment of the Dysexecutive Syndrome. Harcourt Assessment, San Antonio (1996)
Zimmermann, P., Fimm, B.: TAP Testbatterie zur Aufmerksamkeitsprüfung. Vera Fimm, Psychologische Testsysteme (2017)
Acknowledgements
This work was supported by the Ministry for Science and Culture of Lower Saxony as part of SecuRIn (VWZN3224).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Gabel, A., Ertas, F., Pleger, M., Schiering, I., Müller, S.V. (2021). Privacy by Design for Neuropsychological Studies Based on an mHealth App. In: Ye, X., et al. Biomedical Engineering Systems and Technologies. BIOSTEC 2020. Communications in Computer and Information Science, vol 1400. Springer, Cham. https://doi.org/10.1007/978-3-030-72379-8_22
Download citation
DOI: https://doi.org/10.1007/978-3-030-72379-8_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-72378-1
Online ISBN: 978-3-030-72379-8
eBook Packages: Computer ScienceComputer Science (R0)