iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-030-67835-7_2
Tropical Cyclones Tracking Based on Satellite Cloud Images: Database and Comprehensive Study | SpringerLink
Skip to main content

Tropical Cyclones Tracking Based on Satellite Cloud Images: Database and Comprehensive Study

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12573))

Included in the following conference series:

Abstract

The tropical cyclone is one of disaster weather that cause serious damages for human community. It is necessary to forecast the tropical cyclone efficiently and accurately for reducing the loss caused by tropical cyclones. With the development of computer vision and satellite technology, high quality meteorological data can be got and advanced technologies have been proposed in visual tracking domain. This makes it possible to develop algorithms to do the automatic tropical cyclone tracking which plays a critical role in tropical cyclone forecast. In this paper, we present a novel database for Typical Cyclone Tracking based on Satellite Cloud Image, called TCTSCI. To the best of our knowledge, TCTSCI is the first satellite cloud image database of tropical cyclone tracking. It consists of 28 video sequences and totally 3,432 frames with \(6001\times 6001\) pixels. It includes tropical cyclones of five different intensities distributing in 2019. Each frame is scientifically inspected and labeled with the authoritative tropical cyclone data. Besides, to encourage and facilitate research of multimodal methods for tropical cyclone tracking, TCTSCI provides not only visual bounding box annotations but multimodal meteorological data of tropical cyclones. We evaluate 11 state-of-the-art and widely used trackers by using OPE and EAO metrics and analyze the challenges on TCTSCI for these trackers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Babenko, B., Yang, M.H., Belongie, S.: Visual tracking with online multiple instance learning. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 983–990. IEEE (2009)

    Google Scholar 

  2. Bessho, K., et al.: An introduction to Himawari-8/9–Japan’s new-generation geostationary meteorological satellites. J. Meteorol. Soc. Jpn. Ser. II 94(2), 151–183 (2016)

    Google Scholar 

  3. Bhat, G., Danelljan, M., Gool, L.V., Timofte, R.: Learning discriminative model prediction for tracking. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 6182–6191 (2019)

    Google Scholar 

  4. Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550. IEEE (2010)

    Google Scholar 

  5. Chen, Z., Zhong, B., Li, G., Zhang, S., Ji, R.: Siamese box adaptive network for visual tracking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6668–6677 (2020)

    Google Scholar 

  6. CMA: Typhoon network of central meteorological station. http://typhoon.nmc.cn/web.html (2015)

  7. Fan, H., et al.: LaSOT: a high-quality benchmark for large-scale single object tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5374–5383 (2019)

    Google Scholar 

  8. Grabner, H., Grabner, M., Bischof, H.: Real-time tracking via on-line boosting. In: Proceedings of British Machine Vision Conference (BMVC), vol. 1, pp. 47–56 (2006). https://doi.org/10.5244/C.20.6

  9. Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: High-speed tracking with kernelized correlation filters. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 583–596 (2014)

    Article  Google Scholar 

  10. Huang, L., Zhao, X., Huang, K.: Got-10k: a large high-diversity benchmark for generic object tracking in the wild. IEEE Trans. Pattern Anal. Mach. Intell. (2019)

    Google Scholar 

  11. JMA: Airmass RGB analysis of air mass and jet stream (2015). https://www.jma.go.jp/jma/jma-eng/satellite/VLab/RGB-Airmass.pdf

  12. Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759. IEEE (2010)

    Google Scholar 

  13. Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking-learning-detection. IEEE Trans. Pattern Anal. Mach. Intell. 34(7), 1409–1422 (2011)

    Article  Google Scholar 

  14. Kristan, M., et al.: The visual object tracking vot2015 challenge results. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 1–23 (2015)

    Google Scholar 

  15. Kristan, M., et al.: The seventh visual object tracking vot2019 challenge results. In: Proceedings of the IEEE International Conference on Computer Vision Workshops (2019)

    Google Scholar 

  16. Lukežič, A., Vojíř, T., Zajc, L.Č., Matas, J., Kristan, M.: Discriminative correlation filter tracker with channel and spatial reliability. Int. J. Comput. Vis. 7(126), 671–688 (2018)

    Article  MathSciNet  Google Scholar 

  17. Marvasti-Zadeh, S.M., Cheng, L., Ghanei-Yakhdan, H., Kasaei, S.: Deep learning for visual tracking: a comprehensive survey. arXiv preprint arXiv:1912.00535 (2019)

  18. Muller, M., Bibi, A., Giancola, S., Alsubaihi, S., Ghanem, B.: TrackingNet: a large-scale dataset and benchmark for object tracking in the wild. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 300–317 (2018)

    Google Scholar 

  19. Nam, H., Han, B.: Learning multi-domain convolutional neural networks for visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4293–4302 (2016)

    Google Scholar 

  20. Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., et al.: Deep learning and process understanding for data-driven earth system science. Nature 566(7743), 195–204 (2019)

    Article  Google Scholar 

  21. Wang, Q., Zhang, L., Bertinetto, L., Hu, W., Torr, P.H.: Fast online object tracking and segmentation: a unifying approach. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1328–1338 (2019)

    Google Scholar 

  22. Wu, Y., Lim, J., Yang, M.: Object tracking benchmark. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1834–1848 (2015)

    Article  Google Scholar 

  23. Wu, Y., Lim, J., Yang, M.H.: Online object tracking: a benchmark. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2411–2418 (2013)

    Google Scholar 

  24. Ying, M., et al.: An overview of the China meteorological administration tropical cyclone database. J. Atmos. Oceanic Technol. 31(2), 287–301 (2014)

    Article  Google Scholar 

  25. Yong, C., Jing, J.: Typical modes of tropical cyclone rainfalls over China during the typhoon seasons and significant impact facts. J. Nanjing Univ. (Nat. Sci.) 1 (2011)

    Google Scholar 

  26. Zhang, Q., Lai, L., Wei, H., Zong, X.: Non-clear typhoon eye tracking by artificial ant colony. In: 2006 International Conference on Machine Learning and Cybernetics, pp. 4063–4068. IEEE (2006)

    Google Scholar 

Download references

Acknowledgments

This work is partially supported by National Key Research and Development Program of China (No. 2018YFE0126100), National Natural Science Foundation of China under Grant (No. 61906168, 61976192, 41775008 and 61702275).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cong Bai or Jinglin Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, C., Chan, S., Bai, C., Ding, W., Zhang, J. (2021). Tropical Cyclones Tracking Based on Satellite Cloud Images: Database and Comprehensive Study. In: Lokoč, J., et al. MultiMedia Modeling. MMM 2021. Lecture Notes in Computer Science(), vol 12573. Springer, Cham. https://doi.org/10.1007/978-3-030-67835-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67835-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67834-0

  • Online ISBN: 978-3-030-67835-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics