iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-030-64559-5_3
Image Categorization Using Agglomerative Clustering Based Smoothed Dirichlet Mixtures | SpringerLink
Skip to main content

Image Categorization Using Agglomerative Clustering Based Smoothed Dirichlet Mixtures

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12510))

Included in the following conference series:

Abstract

With the rapid growth of multimedia data and the diversity of the available image contents, it becomes necessary to develop advanced machine learning algorithms for the purpose of categorizing and recognizing images. Hierarchical clustering methods have shown promising results in computer vision applications. In this paper, we present a new unsupervised image categorization technique in which we cluster images using an agglomerative hierarchical procedure and a dissimilarity metric is derived based on smoothed Dirichlet (SD) distribution. We propose a mixture of SD distributions and a maximum-likelihood learning framework, from which we derive a Kulback-Leibler divergence between two SD mixture models. Experiments on challenging images dataset that contains different indoor and outdoor places reveal the importance of the hierarchical clustering when categorizing images. The conducted tests prove the robustness of the proposed image categorization approach as compared to the other related-works.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bakhtiari, A.S., Bouguila, N.: A hierarchical statistical model for object classification. In: 2010 IEEE International Workshop on Multimedia Signal Processing, MMSP 2010, Saint Malo, France, 4–6 October 2010, pp. 493–498. IEEE (2010)

    Google Scholar 

  2. Bakhtiari, A.S., Bouguila, N.: An expandable hierarchical statistical framework for count data modeling and its application to object classification. In: IEEE 23rd International Conference on Tools with Artificial Intelligence, ICTAI 2011, Boca Raton, FL, USA, 7–9 November 2011, pp. 817–824. IEEE Computer Society (2011)

    Google Scholar 

  3. Bdiri, T., Bouguila, N., Ziou, D.: Visual scenes categorization using a flexible hierarchical mixture model supporting users ontology. In: 25th IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2013, Herndon, VA, USA, 4–6 November 2013, pp. 262–267. IEEE Computer Society (2013)

    Google Scholar 

  4. Borji, A., Itti, L.: Cat 2000: a large scale fixation dataset for boosting saliency research. arXiv preprint arXiv:1505.03581 (2015)

  5. Bouguila, N., Ziou, D.: Improving content based image retrieval systems using finite multinomial Dirichlet mixture. In: Proceedings of the 2004 14th IEEE Signal Processing Society Workshop Machine Learning for Signal Processing, pp. 23–32 (2004)

    Google Scholar 

  6. Bouguila, N.: Spatial color image databases summarization. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2007, Honolulu, Hawaii, USA, 15–20 April 2007, pp. 953–956. IEEE (2007)

    Google Scholar 

  7. Bouguila, N.: Clustering of count data using generalized Dirichlet multinomial distributions. IEEE Trans. Knowl. Data Eng. 20(4), 462–474 (2008)

    Article  Google Scholar 

  8. Bouguila, N.: A model-based approach for discrete data clustering and feature weighting using MAP and stochastic complexity. IEEE Trans. Knowl. Data Eng. 21(12), 1649–1664 (2009)

    Article  Google Scholar 

  9. Bouguila, N.: Count data modeling and classification using finite mixtures of distributions. IEEE Trans. Neural Netw. 22(2), 186–198 (2011)

    Article  Google Scholar 

  10. Bouguila, N., Amayri, O.: A discrete mixture-based kernel for SVMs: application to spam and image categorization. Inf. Process. Manag. 45(6), 631–642 (2009)

    Article  Google Scholar 

  11. Bouguila, N., ElGuebaly, W.: Discrete data clustering using finite mixture models. Pattern Recognit. 42(1), 33–42 (2009)

    Article  Google Scholar 

  12. Bouguila, N., Ghimire, M.N.: Discrete visual features modeling via leave-one-out likelihood estimation and applications. J. Vis. Commun. Image Represent. 21(7), 613–626 (2010)

    Article  Google Scholar 

  13. Bouguila, N., Ziou, D.: MML-based approach for finite Dirichlet mixture estimation and selection. In: Perner, P., Imiya, A. (eds.) MLDM 2005. LNCS (LNAI), vol. 3587, pp. 42–51. Springer, Heidelberg (2005). https://doi.org/10.1007/11510888_5

    Chapter  Google Scholar 

  14. Bouguila, N., Ziou, D.: Using unsupervised learning of a finite Dirichlet mixture model to improve pattern recognition applications. Pattern Recognit. Lett. 26(12), 1916–1925 (2005)

    Article  Google Scholar 

  15. Bouguila, N., Ziou, D.: Unsupervised learning of a finite discrete mixture: applications to texture modeling and image databases summarization. J. Vis. Commun. Image Represent. 18(4), 295–309 (2007)

    Article  Google Scholar 

  16. Bouguila, N., Ziou, D., Vaillancourt, J.: Novel mixtures based on the Dirichlet distribution: application to data and image classification. In: Perner, P., Rosenfeld, A. (eds.) MLDM 2003. LNCS, vol. 2734, pp. 172–181. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45065-3_15

    Chapter  MATH  Google Scholar 

  17. Bouguila, N., Ziou, D., Vaillancourt, J.: Unsupervised learning of a finite mixture model based on the Dirichlet distribution and its application. IEEE Trans. Image Process. 13(11), 1533–1543 (2004)

    Article  Google Scholar 

  18. Bouwmans, T., Silva, C., Marghes, C., Zitouni, M.S., Bhaskar, H., Frelicot, C.: On the role and the importance of features for background modeling and foreground detection. Comput. Sci. Rev. 28, 26–91 (2018)

    Article  MathSciNet  Google Scholar 

  19. Chen, J., Zhuge, H.: Abstractive text-image summarization using multi-modal attentional hierarchical RNN. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 4046–4056 (2018)

    Google Scholar 

  20. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc.: Ser. B (Methodol.) 39(1), 1–22 (1977)

    MathSciNet  MATH  Google Scholar 

  21. Dueck, D., Frey, B.J.: Non-metric affinity propagation for unsupervised image categorization. In: 2007 IEEE 11th International Conference on Computer Vision, pp. 1–8. IEEE (2007)

    Google Scholar 

  22. Elguebaly, T., Bouguila, N.: Semantic scene classification with generalized gaussian mixture models. In: Kamel, M., Campilho, A. (eds.) ICIAR 2015. LNCS, vol. 9164, pp. 159–166. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20801-5_17

    Chapter  Google Scholar 

  23. Ghassab, V.K., Bouguila, N.: Light field super-resolution using edge-preserved graph-based regularization. IEEE Trans. Multimed. 22, 1447–1457 (2019)

    Article  Google Scholar 

  24. Goldberger, J., Gordon, S., Greenspan, H.: An efficient image similarity measure based on approximations of KL-divergence between two gaussian mixtures. In: Null, p. 487. IEEE (2003)

    Google Scholar 

  25. Hershey, J.R., Olsen, P.A.: Approximating the Kullback Leibler divergence between Gaussian mixture models. In: 2007 IEEE International Conference on Acoustics, Speech and Signal Processing-ICASSP 2007, vol. 4, pp. IV-317. IEEE (2007)

    Google Scholar 

  26. Huang, Y., Liu, Q., Lv, F., Gong, Y., Metaxas, D.N.: Unsupervised image categorization by hypergraph partition. IEEE Trans. Pattern Anal. Mach. Intell. 33(6), 1266–1273 (2011)

    Article  Google Scholar 

  27. Kim, S.C., Kang, T.J.: Texture classification and segmentation using wavelet packet frame and Gaussian mixture model. Pattern Recogn. 40(4), 1207–1221 (2007)

    Article  Google Scholar 

  28. Liu, D., Chen, T.: Unsupervised image categorization and object localization using topic models and correspondences between images. In: 2007 IEEE 11th International Conference on Computer Vision, pp. 1–7. IEEE (2007)

    Google Scholar 

  29. Madsen, R.E., Kauchak, D., Elkan, C.: Modeling word burstiness using the Dirichlet distribution. In: Proceedings of the 22nd International Conference on Machine Learning, pp. 545–552 (2005)

    Google Scholar 

  30. Mensink, T., Verbeek, J., Perronnin, F., Csurka, G.: Distance-based image classification: generalizing to new classes at near-zero cost. IEEE Trans. Pattern Anal. Mach. Intell. 35(11), 2624–2637 (2013)

    Article  Google Scholar 

  31. Najar, F., Bouguila, N.: Happiness analysis with fisher information of Dirichlet-multinomial mixture model. In: Goutte, C., Zhu, X. (eds.) Canadian AI 2020. LNCS (LNAI), vol. 12109, pp. 438–444. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-47358-7_45

    Chapter  Google Scholar 

  32. Najar, F., Bourouis, S., Al-Azawi, R., Al-Badi, A.: Online recognition via a finite mixture of multivariate generalized Gaussian distributions. In: Bouguila, N., Fan, W. (eds.) Mixture Models and Applications. USL, pp. 81–106. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-23876-6_5

    Chapter  MATH  Google Scholar 

  33. Najar, F., Bourouis, S., Bouguila, N., Belghith, S.: A comparison between different gaussian-based mixture models. In: 2017 IEEE/ACS 14th International Conference on Computer Systems and Applications (AICCSA), pp. 704–708. IEEE (2017)

    Google Scholar 

  34. Najar, F., Bourouis, S., Zaguia, A., Bouguila, N., Belghith, S.: Unsupervised human action categorization using a Riemannian averaged fixed-point learning of multivariate GGMM. In: Campilho, A., Karray, F., ter Haar Romeny, B. (eds.) ICIAR 2018. LNCS, vol. 10882, pp. 408–415. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93000-8_46

    Chapter  Google Scholar 

  35. Nallapati, R., Minka, T., Robertson, S.: The smoothed-Dirichlet distribution: a new building block for generative models. CIIR Technical Report (2006). http://www.cs.cmu.edu/nmramesh/sdtc.pdf

  36. Nielsen, F., Garcia, V.: Statistical exponential families: a digest with flash cards. arXiv preprint arXiv:0911.4863 (2009)

  37. Nielsen, F., Sun, K.: Guaranteed bounds on the Kullback-Leibler divergence of univariate mixtures. IEEE Signal Process. Lett. 23(11), 1543–1546 (2016)

    Article  Google Scholar 

  38. Rasiwasia, N., Vasconcelos, N.: Latent Dirichlet allocation models for image classification. IEEE Trans. Pattern Anal. Mach. Intell. 35(11), 2665–2679 (2013)

    Article  Google Scholar 

  39. Sharma, V., Kumar, A., Agrawal, N., Singh, P., Kulshreshtha, R.: Image summarization using topic modelling. In: 2015 IEEE International Conference on Signal and Image Processing Applications (ICSIPA), pp. 226–231. IEEE (2015)

    Google Scholar 

  40. Shechtman, E., Caspi, Y., Irani, M.: Space-time super-resolution. IEEE Trans. Pattern Anal. Mach. Intell. 27(4), 531–545 (2005)

    Article  Google Scholar 

  41. Vailaya, A., Figueiredo, M.A., Jain, A.K., Zhang, H.J.: Image classification for content-based indexing. IEEE Trans. Image Process. 10(1), 117–130 (2001)

    Article  Google Scholar 

  42. Vetter, T., Poggio, T.: Image synthesis from a single example image. In: Buxton, B., Cipolla, R. (eds.) ECCV 1996. LNCS, vol. 1064, pp. 652–659. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0015575

    Chapter  Google Scholar 

  43. Yao, Y., Zhang, J., Shen, F., Hua, X., Yang, W., Tang, Z.: Refining image categorization by exploiting web images and general corpus. arXiv preprint arXiv:1703.05451 (2017)

  44. Zhao, B., Li, F., Xing, E.P.: Large-scale category structure aware image categorization. In: Advances in Neural Information Processing Systems, pp. 1251–1259 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fatma Najar or Nizar Bouguila .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Najar, F., Bouguila, N. (2020). Image Categorization Using Agglomerative Clustering Based Smoothed Dirichlet Mixtures. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2020. Lecture Notes in Computer Science(), vol 12510. Springer, Cham. https://doi.org/10.1007/978-3-030-64559-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64559-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64558-8

  • Online ISBN: 978-3-030-64559-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics