Abstract
With the rapid growth of multimedia data and the diversity of the available image contents, it becomes necessary to develop advanced machine learning algorithms for the purpose of categorizing and recognizing images. Hierarchical clustering methods have shown promising results in computer vision applications. In this paper, we present a new unsupervised image categorization technique in which we cluster images using an agglomerative hierarchical procedure and a dissimilarity metric is derived based on smoothed Dirichlet (SD) distribution. We propose a mixture of SD distributions and a maximum-likelihood learning framework, from which we derive a Kulback-Leibler divergence between two SD mixture models. Experiments on challenging images dataset that contains different indoor and outdoor places reveal the importance of the hierarchical clustering when categorizing images. The conducted tests prove the robustness of the proposed image categorization approach as compared to the other related-works.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bakhtiari, A.S., Bouguila, N.: A hierarchical statistical model for object classification. In: 2010 IEEE International Workshop on Multimedia Signal Processing, MMSP 2010, Saint Malo, France, 4–6 October 2010, pp. 493–498. IEEE (2010)
Bakhtiari, A.S., Bouguila, N.: An expandable hierarchical statistical framework for count data modeling and its application to object classification. In: IEEE 23rd International Conference on Tools with Artificial Intelligence, ICTAI 2011, Boca Raton, FL, USA, 7–9 November 2011, pp. 817–824. IEEE Computer Society (2011)
Bdiri, T., Bouguila, N., Ziou, D.: Visual scenes categorization using a flexible hierarchical mixture model supporting users ontology. In: 25th IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2013, Herndon, VA, USA, 4–6 November 2013, pp. 262–267. IEEE Computer Society (2013)
Borji, A., Itti, L.: Cat 2000: a large scale fixation dataset for boosting saliency research. arXiv preprint arXiv:1505.03581 (2015)
Bouguila, N., Ziou, D.: Improving content based image retrieval systems using finite multinomial Dirichlet mixture. In: Proceedings of the 2004 14th IEEE Signal Processing Society Workshop Machine Learning for Signal Processing, pp. 23–32 (2004)
Bouguila, N.: Spatial color image databases summarization. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2007, Honolulu, Hawaii, USA, 15–20 April 2007, pp. 953–956. IEEE (2007)
Bouguila, N.: Clustering of count data using generalized Dirichlet multinomial distributions. IEEE Trans. Knowl. Data Eng. 20(4), 462–474 (2008)
Bouguila, N.: A model-based approach for discrete data clustering and feature weighting using MAP and stochastic complexity. IEEE Trans. Knowl. Data Eng. 21(12), 1649–1664 (2009)
Bouguila, N.: Count data modeling and classification using finite mixtures of distributions. IEEE Trans. Neural Netw. 22(2), 186–198 (2011)
Bouguila, N., Amayri, O.: A discrete mixture-based kernel for SVMs: application to spam and image categorization. Inf. Process. Manag. 45(6), 631–642 (2009)
Bouguila, N., ElGuebaly, W.: Discrete data clustering using finite mixture models. Pattern Recognit. 42(1), 33–42 (2009)
Bouguila, N., Ghimire, M.N.: Discrete visual features modeling via leave-one-out likelihood estimation and applications. J. Vis. Commun. Image Represent. 21(7), 613–626 (2010)
Bouguila, N., Ziou, D.: MML-based approach for finite Dirichlet mixture estimation and selection. In: Perner, P., Imiya, A. (eds.) MLDM 2005. LNCS (LNAI), vol. 3587, pp. 42–51. Springer, Heidelberg (2005). https://doi.org/10.1007/11510888_5
Bouguila, N., Ziou, D.: Using unsupervised learning of a finite Dirichlet mixture model to improve pattern recognition applications. Pattern Recognit. Lett. 26(12), 1916–1925 (2005)
Bouguila, N., Ziou, D.: Unsupervised learning of a finite discrete mixture: applications to texture modeling and image databases summarization. J. Vis. Commun. Image Represent. 18(4), 295–309 (2007)
Bouguila, N., Ziou, D., Vaillancourt, J.: Novel mixtures based on the Dirichlet distribution: application to data and image classification. In: Perner, P., Rosenfeld, A. (eds.) MLDM 2003. LNCS, vol. 2734, pp. 172–181. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45065-3_15
Bouguila, N., Ziou, D., Vaillancourt, J.: Unsupervised learning of a finite mixture model based on the Dirichlet distribution and its application. IEEE Trans. Image Process. 13(11), 1533–1543 (2004)
Bouwmans, T., Silva, C., Marghes, C., Zitouni, M.S., Bhaskar, H., Frelicot, C.: On the role and the importance of features for background modeling and foreground detection. Comput. Sci. Rev. 28, 26–91 (2018)
Chen, J., Zhuge, H.: Abstractive text-image summarization using multi-modal attentional hierarchical RNN. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 4046–4056 (2018)
Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc.: Ser. B (Methodol.) 39(1), 1–22 (1977)
Dueck, D., Frey, B.J.: Non-metric affinity propagation for unsupervised image categorization. In: 2007 IEEE 11th International Conference on Computer Vision, pp. 1–8. IEEE (2007)
Elguebaly, T., Bouguila, N.: Semantic scene classification with generalized gaussian mixture models. In: Kamel, M., Campilho, A. (eds.) ICIAR 2015. LNCS, vol. 9164, pp. 159–166. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20801-5_17
Ghassab, V.K., Bouguila, N.: Light field super-resolution using edge-preserved graph-based regularization. IEEE Trans. Multimed. 22, 1447–1457 (2019)
Goldberger, J., Gordon, S., Greenspan, H.: An efficient image similarity measure based on approximations of KL-divergence between two gaussian mixtures. In: Null, p. 487. IEEE (2003)
Hershey, J.R., Olsen, P.A.: Approximating the Kullback Leibler divergence between Gaussian mixture models. In: 2007 IEEE International Conference on Acoustics, Speech and Signal Processing-ICASSP 2007, vol. 4, pp. IV-317. IEEE (2007)
Huang, Y., Liu, Q., Lv, F., Gong, Y., Metaxas, D.N.: Unsupervised image categorization by hypergraph partition. IEEE Trans. Pattern Anal. Mach. Intell. 33(6), 1266–1273 (2011)
Kim, S.C., Kang, T.J.: Texture classification and segmentation using wavelet packet frame and Gaussian mixture model. Pattern Recogn. 40(4), 1207–1221 (2007)
Liu, D., Chen, T.: Unsupervised image categorization and object localization using topic models and correspondences between images. In: 2007 IEEE 11th International Conference on Computer Vision, pp. 1–7. IEEE (2007)
Madsen, R.E., Kauchak, D., Elkan, C.: Modeling word burstiness using the Dirichlet distribution. In: Proceedings of the 22nd International Conference on Machine Learning, pp. 545–552 (2005)
Mensink, T., Verbeek, J., Perronnin, F., Csurka, G.: Distance-based image classification: generalizing to new classes at near-zero cost. IEEE Trans. Pattern Anal. Mach. Intell. 35(11), 2624–2637 (2013)
Najar, F., Bouguila, N.: Happiness analysis with fisher information of Dirichlet-multinomial mixture model. In: Goutte, C., Zhu, X. (eds.) Canadian AI 2020. LNCS (LNAI), vol. 12109, pp. 438–444. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-47358-7_45
Najar, F., Bourouis, S., Al-Azawi, R., Al-Badi, A.: Online recognition via a finite mixture of multivariate generalized Gaussian distributions. In: Bouguila, N., Fan, W. (eds.) Mixture Models and Applications. USL, pp. 81–106. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-23876-6_5
Najar, F., Bourouis, S., Bouguila, N., Belghith, S.: A comparison between different gaussian-based mixture models. In: 2017 IEEE/ACS 14th International Conference on Computer Systems and Applications (AICCSA), pp. 704–708. IEEE (2017)
Najar, F., Bourouis, S., Zaguia, A., Bouguila, N., Belghith, S.: Unsupervised human action categorization using a Riemannian averaged fixed-point learning of multivariate GGMM. In: Campilho, A., Karray, F., ter Haar Romeny, B. (eds.) ICIAR 2018. LNCS, vol. 10882, pp. 408–415. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93000-8_46
Nallapati, R., Minka, T., Robertson, S.: The smoothed-Dirichlet distribution: a new building block for generative models. CIIR Technical Report (2006). http://www.cs.cmu.edu/nmramesh/sdtc.pdf
Nielsen, F., Garcia, V.: Statistical exponential families: a digest with flash cards. arXiv preprint arXiv:0911.4863 (2009)
Nielsen, F., Sun, K.: Guaranteed bounds on the Kullback-Leibler divergence of univariate mixtures. IEEE Signal Process. Lett. 23(11), 1543–1546 (2016)
Rasiwasia, N., Vasconcelos, N.: Latent Dirichlet allocation models for image classification. IEEE Trans. Pattern Anal. Mach. Intell. 35(11), 2665–2679 (2013)
Sharma, V., Kumar, A., Agrawal, N., Singh, P., Kulshreshtha, R.: Image summarization using topic modelling. In: 2015 IEEE International Conference on Signal and Image Processing Applications (ICSIPA), pp. 226–231. IEEE (2015)
Shechtman, E., Caspi, Y., Irani, M.: Space-time super-resolution. IEEE Trans. Pattern Anal. Mach. Intell. 27(4), 531–545 (2005)
Vailaya, A., Figueiredo, M.A., Jain, A.K., Zhang, H.J.: Image classification for content-based indexing. IEEE Trans. Image Process. 10(1), 117–130 (2001)
Vetter, T., Poggio, T.: Image synthesis from a single example image. In: Buxton, B., Cipolla, R. (eds.) ECCV 1996. LNCS, vol. 1064, pp. 652–659. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0015575
Yao, Y., Zhang, J., Shen, F., Hua, X., Yang, W., Tang, Z.: Refining image categorization by exploiting web images and general corpus. arXiv preprint arXiv:1703.05451 (2017)
Zhao, B., Li, F., Xing, E.P.: Large-scale category structure aware image categorization. In: Advances in Neural Information Processing Systems, pp. 1251–1259 (2011)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Najar, F., Bouguila, N. (2020). Image Categorization Using Agglomerative Clustering Based Smoothed Dirichlet Mixtures. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2020. Lecture Notes in Computer Science(), vol 12510. Springer, Cham. https://doi.org/10.1007/978-3-030-64559-5_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-64559-5_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-64558-8
Online ISBN: 978-3-030-64559-5
eBook Packages: Computer ScienceComputer Science (R0)