Abstract
This paper develops an online subspace clustering technique which is capable of handling continuous arrival of data in a streaming manner. Subspace clustering is a technique where the subset of features that are used to represent a cluster are different for different clusters. Most of the streaming data clustering methods primarily optimize only a single objective function which limits the model in capturing only a particular shape or property. However, the simultaneous optimization of multiple objectives helps in overcoming the above mentioned limitations and enables to generate good quality clusters. Inspired by this, the developed streaming subspace clustering method optimizes multiple objectives capturing cluster compactness and feature relevancy. In this paper, we consider an evolutionary-based technique and optimize multiple objective functions simultaneously to determine the optimal subspace clusters. The generated clusters in the proposed method are allowed to contain overlapping of objects. To establish the superiority of using multiple objectives, the proposed method is evaluated on three real-life and three synthetic data sets. The results obtained by the proposed method are compared with several state-of-the-art methods and the comparative study shows the superiority of using multiple objectives in the proposed method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aggarwal, C C., Han, J., Wang, J., Yu, P.S.: A framework for projected clustering of high dimensional data streams. In: Proceedings of the Thirtieth International Conference on Very Large Data, vol. 30, pp. 852–863 (2004)
Aggarwal, C.C., Philip, S.Y., Han, J., Wang, J.: A framework for clustering evolving data streams. In: Proceedings 2003 VLDB Conference, pp. 81–92 (2003)
Bezdek, J.C., Ehrlich, R., Full, W.: FCM: the fuzzy c-means clustering algorithm. Comput. Geosci. 10, 191–203 (1984)
Chen, Y., Tu, L.: Density-based clustering for real-time stream data. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 133–142 (2007)
Paul, D., Saha, S., Mathew, J.: Improved subspace clustering algorithm using multi-objective framework and subspace optimization. Expert Syst. Appl. 113487 (2020)
Paul, D., Saha, S., Mathew, J.: Fusion of evolvable genome structure and multi-objective optimization for subspace clustering. Pattern Recogn. 95, 58–71 (2019)
Peignier, S.: Subspace clustering on static datasets and dynamic data streams using bio-inspired algorithms. Ph.D. Thesis, University de Lyon, INSA Lyon (2017)
Yan, X., Razeghi, J.M., Homaifar, A., Erol, B.A., Girma, A., Tunstel, E:. A novel streaming data clustering algorithm based on fitness proportionate sharing. In: IEEE Access, pp. 184985–185000 (2019)
Guha, S., Mishra, N., Motwani, R., o’Callaghan, L.: Clustering data streams. In: Proceedings 41st Annual Symposium on Foundations of Computer Science, pp. 359–366 (2000)
Cao, F., Estert, M., Qian, W., Zhou, A.: Density-based clustering over an evolving data stream with noise. In: Proceedings of the 2006 SIAM International Conference on Data Mining, pp. 328–339 (2006)
Ren, J., Ma, R.: Density-based data streams clustering over sliding windows. In: Sixth International Conference on Fuzzy Systems and Knowledge Discovery, vol. 5, pp. 248–252 (2009)
Amini, A., Wah, T.Y., Teh, Y.W.: DENGRIS-stream: a density-grid based clustering algorithm for evolving data streams over sliding window. In: International Conference on Data Mining and Computer Engineering, pp. 206–210 (2012)
Acknowledgement
Dr. Sriparna Saha would like to acknowledge the support of Early Career Research Award of Science and Engineering Research Board (SERB) of Department of Science & Technology India to carry out this research.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Paul, D., Saha, S., Mathew, J. (2020). Online Multi-objective Subspace Clustering for Streaming Data. In: Yang, H., Pasupa, K., Leung, A.CS., Kwok, J.T., Chan, J.H., King, I. (eds) Neural Information Processing. ICONIP 2020. Communications in Computer and Information Science, vol 1332. Springer, Cham. https://doi.org/10.1007/978-3-030-63820-7_11
Download citation
DOI: https://doi.org/10.1007/978-3-030-63820-7_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-63819-1
Online ISBN: 978-3-030-63820-7
eBook Packages: Computer ScienceComputer Science (R0)