Abstract
Identification of subcortical structures is an essential step in surgical planning for interventions such as the deep brain stimulation (DBS), in which permanent electrode is implanted in a precisely defined location. For refinement of the target localisation and compensation of brain shift occurring during the surgery, intra-operative electrophysiological recording using microelectrodes is usually undertaken.
In this paper, we present a multimodal method that consists of a) subthalamic nucleus (STN) segmentation from magnetic resonance T2 images using 3D active contour fitting and b) a subsequent brain shift compensation step, increasing the accuracy of microelectrode placement localisation by the probabilistic electrophysiology-based fitting. The method is evaluated on a data set of 39 multi-electrode trajectories from 20 patients undergoing DBS surgery for Parkinson’s disease in a leave-one-subject-out scenario. The performance comparison shows increased sensitivity and slightly decreased specificity of STN identification using the individually-segmented 3D contours, compared to electrophysiology-based refinement of a standard 3D atlas.
To achieve accurate segmentation from the low-resolution clinical T2 images, a more sophisticated approach, including shape priors and intensity model, needs to be implemented. However, the presented approach is a step towards automatic identification of microelectrode recording sites and possibly also an assistive system for the DBS surgery.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bakštein, E., Sieger, T., Novák, D., Růžička, F., Jech, R.: Automated atlas fitting for deep brain stimulation surgery based on microelectrode neuronal recordings. In: Lhotska, L., Sukupova, L., Lacković, I., Ibbott, G.S. (eds.) World Congress on Medical Physics and Biomedical Engineering 2018. IP, vol. 68/3, pp. 105–111. Springer, Singapore (2019). https://doi.org/10.1007/978-981-10-9023-3_19
Bakštein, E., Sieger, T., Růžička, F., Novák, D., Jech, R.: Fusion of microelectrode neuronal recordings and MRI landmarks for automatic atlas fitting in deep brain stimulation surgery. In: Stoyanov, D., et al. (eds.) CARE/CLIP/OR 2.0/ISIC -2018. LNCS, vol. 11041, pp. 175–183. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01201-4_19
Bakštein, E., et al.: Methods for automatic detection of artifacts in microelectrode recordings. J. Neurosci. Meth. 290, 39–51 (2017)
Bjerknes, S., et al.: Multiple microelectrode recordings in STN-DBS surgery for Parkinson’s disease: a randomized study. Mov. Disord. Clin. Pract. 5(3), 296–305 (2018)
Chan, T., Vese, L.: An active contour model without edges. In: Nielsen, M., Johansen, P., Olsen, O.F., Weickert, J. (eds.) Scale-Space 1999. LNCS, vol. 1682, pp. 141–151. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48236-9_13
Chen, X., Williams, B.M., Vallabhaneni, S.R., Czanner, G., Williams, R., Zheng, Y.: Learning active contour models for medical image segmentation. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11624–11632. IEEE, Long Beach, CA, USA, June 2019
Coenen, V.A., Prescher, A., Schmidt, T., Picozzi, P., Gielen, F.L.H.: What is dorso-lateral in the subthalamic Nucleus (STN)?–a topographic and anatomical consideration on the ambiguous description of today’s primary target for deep brain stimulation (DBS) surgery. Acta Neurochir. (Wien) 150(11), 1163–1165 (2008)
Groiss, S., Wojtecki, L., Südmeyer, M., Schnitzler, A.: Review: deep brain stimulation in Parkinson’s disease. Ther. Adv. Neurol. Disord. 2(6), 379–391 (2009)
Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vision 1(4), 321–331 (1988)
Marquez-Neila, P., Baumela, L., Alvarez, L.: A morphological approach to curvature-based evolution of curves and surfaces. IEEE Trans. Pattern Anal. Mach. Intell. 36(1), 2–17 (2014)
Moran, A., Bar-Gad, I., Bergman, H., Israel, Z.: Real-time refinement of subthalamic nucleus targeting using Bayesian decision-making on the root mean square measure. Mov. Disord. 21(9), 1425–1431 (2006)
Patenaude, B., Smith, S.M., Kennedy, D.N., Jenkinson, M.: A Bayesian model of shape and appearance for subcortical brain segmentation. NeuroImage 56(3), 907–922 (2011)
Reinhold, J.C., Dewey, B.E., Carass, A., Prince, J.L.: Evaluating the impact of intensity normalization on MR image synthesis. arXiv:1812.04652 [cs], December 2018. arXiv: 1812.04652
Sieger, T., et al.: Distinct populations of neurons respond to emotional valence and arousal in the human subthalamic nucleus. Proc. Natl. Acad. Sci. 112(10), 3116–3121 (2015)
Smith, S.M.: Fast robust automated brain extraction. Hum. Brain Mapp. 17(3), 143–155 (2002)
Visser, E., Keuken, M.C., Forstmann, B.U., Jenkinson, M.: Automated segmentation of the substantia nigra, subthalamic nucleus and red nucleus in 7 T data at young and old age. Neuroimage 139, 324–336 (2016)
Zhang, Y., Brady, M., Smith, S.: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging 20(1), 45–57 (2001)
Zwirner, J., et al.: Subthalamic nucleus volumes are highly consistent but decrease age-dependently-a combined magnetic resonance imaging and stereology approach in humans. Hum. Brain Mapp. 38(2), 909–922 (2017)
Acknowledgments
The study was supported by the Research Centre for Informatics, grant number CZ.02.1.01/0.0/16~019/0000765 and by the grant Biomedical data acquisition, processing and visualisation, number SGS19/171/OHK3/3T/13. The work of EB has been supported by the Ministry of Health of the Czech Republic under the grant NV19-04-00233.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Varga, I., Bakstein, E., Gilmore, G., Novak, D. (2020). Image-Based Subthalamic Nucleus Segmentation for Deep Brain Surgery with Electrophysiology Aided Refinement. In: Syeda-Mahmood, T., et al. Multimodal Learning for Clinical Decision Support and Clinical Image-Based Procedures. CLIP ML-CDS 2020 2020. Lecture Notes in Computer Science(), vol 12445. Springer, Cham. https://doi.org/10.1007/978-3-030-60946-7_4
Download citation
DOI: https://doi.org/10.1007/978-3-030-60946-7_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-60945-0
Online ISBN: 978-3-030-60946-7
eBook Packages: Computer ScienceComputer Science (R0)