Abstract
Both image registration and label fusion in the multi-atlas segmentation (MAS) rely on the intensity similarity between target and atlas images. However, such similarity can be problematic when target and atlas images are acquired using different imaging protocols. High-level structure information can provide reliable similarity measurement for cross-modality images when cooperating with deep neural networks (DNNs). This work presents a new MAS framework for cross-modality images, where both image registration and label fusion are achieved by DNNs. For image registration, we propose a consistent registration network, which can jointly estimate forward and backward dense displacement fields (DDFs). Additionally, an invertible constraint is employed in the network to reduce the correspondence ambiguity of the estimated DDFs. For label fusion, we adapt a few-shot learning network to measure the similarity of atlas and target patches. Moreover, the network can be seamlessly integrated into the patch-based label fusion. The proposed framework is evaluated on the MM-WHS dataset of MICCAI 2017. Results show that the framework is effective in both cross-modality registration and segmentation.
X. Zhuang and L. Huang are co-seniors. This work was funded by the National Natural Science Foundation of China (Grant No. 61971142), and Shanghai Municipal Science and Technology Major Project (Grant No. 2017SHZDZX01).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Avants, B.B., Tustison, N., Song, G.: Advanced normalization tools (ANTs). Insight j 2(365), 1–35 (2009)
Christensen, G.E., Johnson, H.J.: Consistent image registration. IEEE Trans. Med. Imaging 20(7), 568–582 (2001)
Coupé, P., Manjón, J.V., Fonov, V., Pruessner, J., Robles, M., Collins, D.L.: Nonlocal patch-based label fusion for hippocampus segmentation. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6363, pp. 129–136. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15711-0_17
Ding, Z., Han, X., Niethammer, M.: VoteNet: a deep learning label fusion method for multi-atlas segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 202–210. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_23
Heinrich, M.P., Jenkinson, M., Papież, B.W., Brady, S.M., Schnabel, J.A.: Towards realtime multimodal fusion for image-guided interventions using self-similarities. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8149, pp. 187–194. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40811-3_24
Hu, Y., et al.: Weakly-supervised convolutional neural networks for multimodal image registration. Med. Image Anal. 49, 1–13 (2018)
Iglesias, J.E., Sabuncu, M.R., Van Leemput, K.: A unified framework for cross-modality multi-atlas segmentation of brain MRI. Med. Image Anal. 17(8), 1181–1191 (2013)
Kasiri, K., Fieguth, P., Clausi, D.A.: Cross modality label fusion in multi-atlas segmentation. In: 2014 IEEE International Conference on Image Processing (ICIP), pp. 16–20. IEEE (2014)
Luan, H., Qi, F., Xue, Z., Chen, L., Shen, D.: Multimodality image registration by maximization of quantitative-qualitative measure of mutual information. Pattern Recogn. 41(1), 285–298 (2008)
Payer, C., Štern, D., Bischof, H., Urschler, M.: Multi-label whole heart segmentation using CNNs and anatomical label configurations. In: Pop, M., et al. (eds.) STACOM 2017. LNCS, vol. 10663, pp. 190–198. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75541-0_20
Qin, C., Shi, B., Liao, R., Mansi, T., Rueckert, D., Kamen, A.: Unsupervised deformable registration for multi-modal images via disentangled representations. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 249–261. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_19
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Sanroma, G., et al.: Learning non-linear patch embeddings with neural networks for label fusion. Med. Image Anal. 44, 143–155 (2018)
Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In: Advances in neural Information Processing Systems, pp. 4077–4087 (2017)
Studholme, C., Hill, D.L., Hawkes, D.J.: An overlap invariant entropy measure of 3D medical image alignment. Pattern Recogn. 32(1), 71–86 (1999)
Thirion, J.: Image matching as a diffusion process: an analogy with Maxwell’s demons. Med. Image Anal. 2(3), 243–260 (1998)
Wachinger, C., Navab, N.: Entropy and Laplacian images: structural representations for multi-modal registration. Med. Image Anal. 16(1), 1–17 (2012)
Wang, H., Suh, J.W., Das, S.R., Pluta, J.B., Craige, C., Yushkevich, P.A.: Multi-atlas segmentation with joint label fusion. IEEE Trans. Pattern Anal. Mach. Intell. 35(3), 611–623 (2012)
Warfield, S.K., Zou, K.H., Wells, W.M.: Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE Trans. Med. Imaging 23(7), 903–921 (2004)
Xie, L., Wang, J., Dong, M., Wolk, D.A., Yushkevich, P.A.: Improving multi-atlas segmentation by convolutional neural network based patch error estimation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 347–355. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_39
Yang, H., Sun, J., Li, H., Wang, L., Xu, Z.: Neural multi-atlas label fusion: application to cardiac MR images. Med. Image Anal. 49, 60–75 (2018)
Zhuang, X., et al.: Evaluation of algorithms for multi-modality whole heart segmentation: an open-access grand challenge. Med. Image Anal. 58, 101537 (2019)
Zhuang, X., Shen, J.: Multi-scale patch and multi-modality atlases for whole heart segmentation of MRI. Med. Image Anal. 31, 77–87 (2016)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Ding, W., Li, L., Zhuang, X., Huang, L. (2020). Cross-Modality Multi-atlas Segmentation Using Deep Neural Networks. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12263. Springer, Cham. https://doi.org/10.1007/978-3-030-59716-0_23
Download citation
DOI: https://doi.org/10.1007/978-3-030-59716-0_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-59715-3
Online ISBN: 978-3-030-59716-0
eBook Packages: Computer ScienceComputer Science (R0)