iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-030-59710-8_12
Feature Preserving Smoothing Provides Simple and Effective Data Augmentation for Medical Image Segmentation | SpringerLink
Skip to main content

Feature Preserving Smoothing Provides Simple and Effective Data Augmentation for Medical Image Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Abstract

CNNs represent the current state of the art for image classification, as well as for image segmentation. Recent work suggests that CNNs for image classification suffer from a bias towards texture, and that reducing it can increase the network’s accuracy. We hypothesize that CNNs for medical image segmentation might suffer from a similar bias. We propose to reduce it by augmenting the training data with feature preserving smoothing, which reduces noise and high-frequency textural features, while preserving semantically meaningful boundaries. Experiments on multiple medical image segmentation tasks confirm that, especially when limited training data is available or a domain shift is involved, feature preserving smoothing can indeed serve as a simple and effective augmentation technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Andreu, F., et al.: Minimizing total variation flow. Diff. Integral Eq. 14(3), 321–360 (2001)

    MathSciNet  MATH  Google Scholar 

  2. Aurich, V., Weule, J.: Non-linear Gaussian filters performing edge preserving diffusion. In: Sagerer, G., Posch, S., Kummert, F. (eds.) Mustererkennung. Informatik Aktuell, pp. 538–545. Springer, Heidelberg (1995). https://doi.org/10.1007/978-3-642-79980-8_63

    Chapter  Google Scholar 

  3. Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4, 170117 (2017)

    Article  Google Scholar 

  4. Bakas, S., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. Technical report 1811.02629, arXiv (2018)

    Google Scholar 

  5. Billot, B., Greve, D., Van Leemput, K., Fischl, B., Iglesias, J.E., Dalca, A.V.: A learning strategy for contrast-agnostic MRI segmentation. Technical report 2003.01995, arXiv (2020)

    Google Scholar 

  6. Bowles, C., et al.: GAN augmentation: augmenting training data using generative adversarial networks. Technical report 1810.10863, arXiv (2018)

    Google Scholar 

  7. Chaitanya, K., Karani, N., Baumgartner, C.F., Becker, A., Donati, O., Konukoglu, E.: Semi-supervised and task-driven data augmentation. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 29–41. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_3

    Chapter  Google Scholar 

  8. Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2414–2423 (2016)

    Google Scholar 

  9. Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F.A., Brendel, W.: ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness. In: International Conference on Learning Representations (ICLR) (2019)

    Google Scholar 

  10. He, K., Sun, J., Tang, X.: Guided image filtering. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6311, pp. 1–14. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15549-9_1

    Chapter  Google Scholar 

  11. Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., Maier-Hein, K.H.: Brain tumor segmentation and radiomics survival prediction: contribution to the BRATS 2017 challenge. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 287–297. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_25

    Chapter  Google Scholar 

  12. Jackson, P.T.G., Abarghouei, A.A., Bonner, S., Breckon, T.P., Obara, B.: Style augmentation: Data augmentation via style randomization. In: CVPR Deep Vision Workshop, pp. 83–92 (2019)

    Google Scholar 

  13. Kuijf, H.J., et al.: Standardized assessment of automatic segmentation of white matter hyperintensities and results of the WMH segmentation challenge. IEEE Trans. Med. Imaging 38(11), 2556–2568 (2019)

    Article  Google Scholar 

  14. Li, H., et al.: Fully convolutional network ensembles for white matter hyperintensities segmentation in MR images. NeuroImage 183, 650–665 (2018)

    Article  Google Scholar 

  15. Ma, R., Tao, P., Tang, H.: Optimizing data augmentation for semantic segmentation on small-scale dataset. In: Proceedings of International Conference on Control and Computer Vision (ICCCV), pp. 77–81 (2019)

    Google Scholar 

  16. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)

    Article  Google Scholar 

  17. Perone, C.S., Ballester, P., Barros, R.C., Cohen-Adad, J.: Unsupervised domain adaptation for medical imaging segmentation with self-ensembling. NeuroImage 194, 1–11 (2019)

    Article  Google Scholar 

  18. Prados, F., et al.: Spinal cord grey matter segmentation challenge. NeuroImage 152, 312–329 (2017)

    Article  Google Scholar 

  19. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  20. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1), 259–268 (1992)

    Article  MathSciNet  Google Scholar 

  21. Sandfort, V., Yan, K., Pickhardt, P.J., Summers, R.M.: Data augmentation using generative adversarial networks (CycleGAN) to improve generalizability in CT segmentation tasks. Sci. Rep. 9(1), 16884 (2019)

    Article  Google Scholar 

  22. Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep learning. J. Big Data 6(1), 60 (2019)

    Article  Google Scholar 

  23. Weickert, J., Romeny, B.T.H., Viergever, M.: Efficient and reliable schemes for nonlinear diffusion filtering. IEEE Trans. Image Process. 7(3), 398–410 (1998)

    Article  Google Scholar 

  24. Zhang, Y., et al.: SPDA: superpixel-based data augmentation for biomedical image segmentation. In: International Conference on Medical Imaging with Deep Learning (MIDL). Proceedings of Machine Learning Research, vol. 102, pp. 572–587 (2019)

    Google Scholar 

  25. Zhao, A., Balakrishnan, G., Durand, F., Guttag, J.V., Dalca, A.V.: Data augmentation using learned transformations for one-shot medical image segmentation. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8543–8553 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Schultz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sheikh, R., Schultz, T. (2020). Feature Preserving Smoothing Provides Simple and Effective Data Augmentation for Medical Image Segmentation. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12261. Springer, Cham. https://doi.org/10.1007/978-3-030-59710-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59710-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59709-2

  • Online ISBN: 978-3-030-59710-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics