Abstract
The optimal design of a single screw extrusion (SSE) is a very difficult task since it deals with several conflicting performance indices. Past research to find the optimal SSE design has been successfully conducted by optimization procedures, in particular by multi-objective optimization. Problems with two or more objectives have been addressed by multi-objective evolutionary algorithms that search for the whole set of promising solutions in a single run. Our approach has been guided by the bi-objective optimization problems, using a methodology based on the weighted Tchebycheff scalarization function. The numerical results show that the proposed methodology is able to produce satisfactory results with physical meaning.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Covas, J.A., Gaspar-Cunha, A., Oliveira, P.: An optimization approach to practical problems in plasticating single screw extrusion. Polym. Eng. Sci. 39, 443–456 (1999)
Covas, J.A., Gaspar-Cunha, A.: Optimisation-based design of extruders. Plast. Rubber Compos. 33(9–10), 416–425 (2004)
Gaspar-Cunha, A., Covas, J.A.: RPSGAe - reduced pareto set genetic algorithm: application to polymer extrusion. In: Gandibleux, X., Sevaux, M., Sörensen, K., Tkindt, V. (eds.) Metaheuristics for Multiobjective Optimisation. Lecture Notes in Economics and Mathematical Systems, vol. 535, pp. 221–249. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-642-17144-4_9
Covas, J.A., Gaspar-Cunha, A.: Polymer extrusion - setting the operating conditions and defining the screw geometry. In: Gaspar-Cunha, A., Covas, J.A. (eds.) Optimization in Polymer Processing, pp. 87–113. Nova Science Publishers (2011)
Gaspar-Cunha, A., Covas, J.A., Costa, M.F.P., Costa, L.: Optimization of single screw extrusion. In: Sikora, J.W., Dulebová, L. (eds.) Technological and Design Aspects of the Processing of Composites and Nanocomposites, vol. I, Scientific-Practical International Workshop (NewEX H2020-MSCA-RISE-2017) Technical University of Košice (2018)
Miettinen, K.M.: A posteriori methods. In: Nonlinear Multiobjective Optimization. International Series in Operations Research & Management Science, vol. 12, pp. 77–113. Springer, Boston (1998). https://doi.org/10.1007/978-1-4615-5563-6_4
Emmerich, M.T.M., Deutz, A.H.: A tutorial on multiobjective optimization: fundamentals and evolutionary methods. Nat. Comput. 17(3), 585–609 (2018). https://doi.org/10.1007/s11047-018-9685-y
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evolut. Comput. 6(2), 182–197 (2002)
Coello, C.A.C., Lechuga, M.S.: MOPSO: a proposal for multiple objective particle swarm optimization. In: Proceedings of the Congress on Evolutionary Computation (CEC 2002) pp. 1051–1056 (2002)
Santana-Quintero, L.V., Coello, C.A.C.: An algorithm based on differential evolution for multi-objective problems. Int. J. Comput. Intell. Res. 1(2), 151–169 (2005)
Angelo, J.S., Barbosa, H.J.C.: On ant colony optimization algorithms for multiobjective problems. In: Ostfeld, A. (ed.) Ant Colony Optimization - Methods and Application, InTech Europe, pp. 53–74 (2011)
Bandyopadhyay, S., Saha, S., Maulik, U., Deb, K.: A simulated annealing-based multiobjective optimization algorithm: AMOSA. IEEE Trans. Evol. Comput. 12(3), 269–283 (2008)
Molina, J., Laguna, M., Marti, R., Caballero, R.: SSPMO: a scatter tabu search procedure for non-linear multiobjective optimization. INFORMS J. Comput. 19(1), 91–100 (2007)
Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)
Zhang, Q., Liu, W., Tsang, E., Virginas, B.: Expensive multiobjective optimization by MOEA/D with Gaussian process model. IEEE Trans. Evol. Comput. 14(3), 456–474 (2010)
Feng, Z., Zhang, Q., Zhang, Q., Tang, Q., Yang, T., Ma, Y.: A multiobjective optimization based framework to balance the global and local exploitation in expensive optimization. J. Glob. Optim. 61, 677–694 (2015)
Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength Pareto evolutionary algorithm. TIK-Report 103, Computer Engineering and Networks Laboratory (TIK), Department of Electrical Engineering, Swiss Federal Institute of Technology (ETH), Zurich ETH Zentrum, Zurich (2001)
Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley, Hoboken (2001)
Steuer, R.E., Choo, E.U.: An interactive weighted Tchebycheff procedure for multiple objective programming. Math. Program. 26, 326–344 (1983)
Deb, K., Miettinen, K., Chaudhuri, S.: Toward an estimation of nadir objective vector using a hybrid of evolutionary and local search approaches. IEEE Trans. Evol. Comput. 14(6), 821–841 (2010)
Gogna, A., Tayal, A.: Metaheuristics: review and application. J. Exp. Theor. Artif. Intell. 25(4), 503–526 (2013)
Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by simulated annealing. Science 220, 671–680 (1983)
Ingber, L.: Adaptive simulated annealing (ASA): lessons learned. Control Cybern. 25(1), 33–54 (1996)
Wah, B.W., Chen, Y., Wang, T.: Simulated annealing with asymptotic convergence for nonlinear constrained optimization. J. Glob. Optim. 39, 1–37 (2007)
Acknowledgments
The authors wish to thank two anonymous referees for their comments and suggestions to improve the paper.
This work has been supported by FCT – Fundação para a Ciência e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020, UIDB/05256/2020 and UIDP/05256/2020, UIDB/00013/2020 and UIDP/00013/2020 of CMAT-UM, and the European project MSCA-RISE-2015, NEWEX, Reference 734205.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Rocha, A.M.A.C., Matos, M.A., Costa, M.F.P., Gaspar-Cunha, A., Fernandes, E.M.G.P. (2020). Single Screw Extrusion Optimization Using the Tchebycheff Scalarization Method. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science(), vol 12251. Springer, Cham. https://doi.org/10.1007/978-3-030-58808-3_48
Download citation
DOI: https://doi.org/10.1007/978-3-030-58808-3_48
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58807-6
Online ISBN: 978-3-030-58808-3
eBook Packages: Computer ScienceComputer Science (R0)