iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-030-58545-7_33
Domain Adaptive Semantic Segmentation Using Weak Labels | SpringerLink
Skip to main content

Domain Adaptive Semantic Segmentation Using Weak Labels

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12354))

Included in the following conference series:

Abstract

Learning semantic segmentation models requires a huge amount of pixel-wise labeling. However, labeled data may only be available abundantly in a domain different from the desired target domain, which only has minimal or no annotations. In this work, we propose a novel framework for domain adaptation in semantic segmentation with image-level weak labels in the target domain. The weak labels may be obtained based on a model prediction for unsupervised domain adaptation (UDA), or from a human annotator in a new weakly-supervised domain adaptation (WDA) paradigm for semantic segmentation. Using weak labels is both practical and useful, since (i) collecting image-level target annotations is comparably cheap in WDA and incurs no cost in UDA, and (ii) it opens the opportunity for category-wise domain alignment. Our framework uses weak labels to enable the interplay between feature alignment and pseudo-labeling, improving both in the process of domain adaptation. Specifically, we develop a weak-label classification module to enforce the network to attend to certain categories, and then use such training signals to guide the proposed category-wise alignment method. In experiments, we show considerable improvements with respect to the existing state-of-the-arts in UDA and present a new benchmark in the WDA setting. Project page is at http://www.nec-labs.com/~mas/WeakSegDA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahn, J., Kwak, S.: Learning pixel-level semantic affinity with image-level supervision for weakly supervised semantic segmentation. In: CVPR (2018)

    Google Scholar 

  2. Bearman, A., Russakovsky, O., Ferrari, V., Fei-Fei, L.: What’s the point: semantic segmentation with point supervision. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 549–565. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_34

    Chapter  Google Scholar 

  3. Bousmalis, K., Silberman, N., Dohan, D., Erhan, D., Krishnan, D.: Unsupervised pixel-level domain adaptation with generative adversarial networks. In: CVPR (2017)

    Google Scholar 

  4. Chang, W.L., Wang, H.P., Peng, W.H., Chiu, W.C.: All about structure: adapting structural information across domains for boosting semantic segmentation. In: CVPR (2019)

    Google Scholar 

  5. Chang, Y.T., Wang, Q., Hung, W.C., Piramuthu, R., Tsai, Y.H., Yang, M.H.: Weakly-supervised semantic segmentation via sub-category exploration. In: CVPR (2020)

    Google Scholar 

  6. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. CoRR abs/1606.00915 (2016)

    Google Scholar 

  7. Chen, Y.H., Chen, W.Y., Chen, Y.T., Tsai, B.C., Wang, Y.C.F., Sun, M.: No more discrimination: cross city adaptation of road scene segmenters. In: ICCV (2017)

    Google Scholar 

  8. Chen, Y.W., Tsai, Y.H., Lin, Y.Y., Yang, M.H.: VOSTR: video object segmentation via transferable representations. Int. J. Comput. Vis. (2020)

    Google Scholar 

  9. Chen, Y., Li, W., Gool, L.V.: ROAD: reality oriented adaptation for semantic segmentation of urban scenes. In: CVPR (2018)

    Google Scholar 

  10. Choi, J., Kim, T., Kim, C.: Self-ensembling with GAN-based data augmentation for domain adaptation in semantic segmentation. In: ICCV (2019)

    Google Scholar 

  11. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: CVPR (2016)

    Google Scholar 

  12. Dai, J., He, K., Sun, J.: BoxSup: exploiting bounding boxes to supervise convolutional networks for semantic segmentation. In: ICCV (2015)

    Google Scholar 

  13. Dai, S., Sohn, K., Tsai, Y.H., Carin, L., Chandraker, M.: Adaptation across extreme variations using unlabeled domain bridges. arXiv preprint arXiv:1906.02238 (2019)

  14. Du, L., et al.: SSF-DAN: separated semantic feature based domain adaptation network for semantic segmentation. In: ICCV (2019)

    Google Scholar 

  15. Fernando, B., Habrard, A., Sebban, M., Tuytelaars, T.: Unsupervised visual domain adaptation using subspace alignment. In: ICCV (2013)

    Google Scholar 

  16. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. In: ICML (2015)

    Google Scholar 

  17. Ganin, Y., et al.: Domain-adversarial training of neural networks. In: JMLR (2016)

    Google Scholar 

  18. Gong, B., Shi, Y., Sha, F., Grauman, K.: Geodesic flow kernel for unsupervised domain adaptation. In: CVPR (2012)

    Google Scholar 

  19. Goodfellow, I.J., et al.: Generative adversarial nets. In: NIPS (2014)

    Google Scholar 

  20. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  21. Hoffman, J., et al.: CYCADA: cycle-consistent adversarial domain adaptation. In: ICML (2018)

    Google Scholar 

  22. Hoffman, J., Wang, D., Yu, F., Darrell, T.: FCNs in the wild: pixel-level adversarial and constraint-based adaptation. CoRR abs/1612.02649 (2016)

    Google Scholar 

  23. Hung, W.C., Tsai, Y.H., Liou, Y.T., Lin, Y.Y., Yang, M.H.: Adversarial learning for semi-supervised semantic segmentation. In: BMVC (2018)

    Google Scholar 

  24. Inoue, N., Furuta, R., Yamasaki, T., Aizawa, K.: Cross-domain weakly-supervised object detection through progressive domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5001–5009 (2018)

    Google Scholar 

  25. Khoreva, A., Benenson, R., Hosang, J., Hein, M., Schiele, B.: Simple does it: weakly supervised instance and semantic segmentation. In: CVPR (2017)

    Google Scholar 

  26. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)

    Google Scholar 

  27. Kolesnikov, A., Lampert, C.H.: Seed, expand and constrain: three principles for weakly-supervised image segmentation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 695–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_42

    Chapter  Google Scholar 

  28. Lee, C.Y., Batra, T., Baig, M.H., Ulbricht, D.: Sliced Wasserstein discrepancy for unsupervised domain adaptation. In: CVPR (2019)

    Google Scholar 

  29. Li, Y., Yuan, L., Vasconcelos, N.: Bidirectional learning for domain adaptation of semantic segmentation. In: CVPR (2019)

    Google Scholar 

  30. Lian, Q., Lv, F., Duan, L., Gong, B.: Constructing self-motivated pyramid curriculums for cross-domain semantic segmentation: a non-adversarial approach. In: ICCV (2019)

    Google Scholar 

  31. Lin, D., Dai, J., Jia, J., He, K., Sun, J.: ScribbleSup: scribble-supervised convolutional networks for semantic segmentation. In: CVPR (2016)

    Google Scholar 

  32. Long, M., Cao, Y., Wang, J., Jordan, M.: Learning transferable features with deep adaptation networks. In: ICML (2015)

    Google Scholar 

  33. Long, M., Zhu, H., Wang, J., Jordan, M.I.: Unsupervised domain adaptation with residual transfer networks. In: NIPS (2016)

    Google Scholar 

  34. Luo, Y., Zheng, L., Guan, T., Yu, J., Yang, Y.: Taking a closer look at domain shift: category-level adversaries for semantics consistent domain adaptation. In: CVPR (2019)

    Google Scholar 

  35. Murez, Z., Kolouri, S., Kriegman, D., Ramamoorthi, R., Kim, K.: Image to image translation for domain adaptation. In: CVPR (2018)

    Google Scholar 

  36. Papandreou, G., Chen, L.C., Murphy, K., Yuille, A.L.: Weakly-and semi-supervised learning of a DCNN for semantic image segmentation. In: ICCV (2015)

    Google Scholar 

  37. Pathak, D., Krahenbuhl, P., Darrell, T.: Constrained convolutional neural networks for weakly supervised segmentation. In: ICCV (2015)

    Google Scholar 

  38. Pinheiro, P.O., Collobert, R.: From image-level to pixel-level labeling with convolutional networks. In: CVPR (2015)

    Google Scholar 

  39. Richter, S.R., Vineet, V., Roth, S., Koltun, V.: Playing for data: ground truth from computer games. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 102–118. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_7

    Chapter  Google Scholar 

  40. Ros, G., Sellart, L., Materzynska, J., Vazquez, D., Lopez, A.M.: The SYNTHIA dataset: a large collection of synthetic images for semantic segmentation of urban scenes. In: CVPR (2016)

    Google Scholar 

  41. Saito, K., Watanabe, K., Ushiku, Y., Harada, T.: Maximum classifier discrepancy for unsupervised domain adaptation. In: CVPR (2018)

    Google Scholar 

  42. Saleh, F.S., Aliakbarian, M.S., Salzmann, M., Petersson, L., Alvarez, J.M.: Bringing background into the foreground: making all classes equal in weakly-supervised video semantic segmentation. In: ICCV (2017)

    Google Scholar 

  43. Saleh, F.S., Aliakbarian, M.S., Salzmann, M., Petersson, L., Alvarez, J.M.: Effective use of synthetic data for urban scene semantic segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11206, pp. 86–103. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01216-8_6

    Chapter  Google Scholar 

  44. Sohn, K., Liu, S., Zhong, G., Yu, X., Yang, M.H., Chandraker, M.: Unsupervised domain adaptation for face recognition in unlabeled videos. In: ICCV (2017)

    Google Scholar 

  45. Sohn, K., Shang, W., Yu, X., Chandraker, M.: Unsupervised domain adaptation for distance metric learning. In: ICLR (2019)

    Google Scholar 

  46. Su, J.C., Tsai, Y.H., Sohn, K., Liu, B., Maji, S., Chandraker, M.: Active adversarial domain adaptation. In: WACV (2020)

    Google Scholar 

  47. Tran, L., Sohn, K., Yu, X., Liu, X., Chandraker, M.: Gotta adapt ’Em all: joint pixel and feature-level domain adaptation for recognition in the wild. In: CVPR (2019)

    Google Scholar 

  48. Tsai, Y.-H., Zhong, G., Yang, M.-H.: Semantic co-segmentation in videos. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 760–775. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_46

    Chapter  Google Scholar 

  49. Tsai, Y.H., Hung, W.C., Schulter, S., Sohn, K., Yang, M.H., Chandraker, M.: Learning to adapt structured output space for semantic segmentation. In: CVPR (2018)

    Google Scholar 

  50. Tsai, Y.H., Sohn, K., Schulter, S., Chandraker, M.: Domain adaptation for structured output via discriminative patch representations. In: ICCV (2019)

    Google Scholar 

  51. Tzeng, E., Hoffman, J., Darrell, T., Saenko, K.: Simultaneous deep transfer across domains and tasks. In: ICCV (2015)

    Google Scholar 

  52. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. In: CVPR (2017)

    Google Scholar 

  53. Vernaza, P., Chandraker, M.: Learning random-walk label propagation for weakly-supervised semantic segmentation. In: CVPR (2017)

    Google Scholar 

  54. Vu, T.H., Jain, H., Bucher, M., Cord, M., Pérez, P.: ADVENT: adversarial entropy minimization for domain adaptation in semantic segmentation. In: CVPR (2019)

    Google Scholar 

  55. Vu, T.H., Jain, H., Bucher, M., Cord, M., Pérez, P.: DADA: depth-aware domain adaptation in semantic segmentation. In: ICCV (2019)

    Google Scholar 

  56. Wu, Z., et al.: DCAN: dual channel-wise alignment networks for unsupervised scene adaptation. In: ECCV (2018)

    Google Scholar 

  57. Zhang, Y., David, P., Gong, B.: Curriculum domain adaptation for semantic segmentation of urban scenes. In: ICCV (2017)

    Google Scholar 

  58. Zhang, Y., Qiu, Z., Yao, T., Liu, D., Mei, T.: Fully convolutional adaptation networks for semantic segmentation. In: CVPR (2018)

    Google Scholar 

  59. Zhong, G., Tsai, Y.-H., Yang, M.-H.: Weakly-supervised video scene co-parsing. In: Lai, S.-H., Lepetit, V., Nishino, K., Sato, Y. (eds.) ACCV 2016. LNCS, vol. 10111, pp. 20–36. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54181-5_2

    Chapter  Google Scholar 

  60. Zou, Y., Yu, Z., Kumar, B.V.K.V., Wang, J.: Domain adaptation for semantic segmentation via class-balanced self-training. In: ECCV (2018)

    Google Scholar 

Download references

Acknowledgement

This work was a part of Sujoy Paul’s internship at NEC Labs America. This work was also partially funded by NSF grant 1724341.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujoy Paul .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 14618 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Paul, S., Tsai, YH., Schulter, S., Roy-Chowdhury, A.K., Chandraker, M. (2020). Domain Adaptive Semantic Segmentation Using Weak Labels. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12354. Springer, Cham. https://doi.org/10.1007/978-3-030-58545-7_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58545-7_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58544-0

  • Online ISBN: 978-3-030-58545-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics