iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-030-57821-3_3
SPOC: Identification of Drug Targets in Biological Networks via Set Preference Output Control | SpringerLink
Skip to main content

SPOC: Identification of Drug Targets in Biological Networks via Set Preference Output Control

  • Conference paper
  • First Online:
Bioinformatics Research and Applications (ISBRA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 12304))

Included in the following conference series:

  • 970 Accesses

Abstract

Biological networks describe the relationships among molecular elements and help in the deep understanding of the biological mechanisms and functions. One of the common problems is to identify the set of biomolecules that could be targeted by drugs to drive the state transition of the cells from disease states to health states called desired states as the realization of the therapy of complex diseases. Most previous studies based on the output control determine the set of steering nodes without considering available biological information. In this study, we propose a strategy by using the additionally available information like the FDA-approved drug targets to restrict the range for choosing steering nodes in output control instead, where we call it the Set Preference Output Control (SPOC) problem. A graphic-theoretic algorithm is proposed to approximately tackle it by using the Maximum Weighted Complete Matching (MWCM). The computation experiment results from two biological networks illustrate that our proposed SPOC strategy outperforms the full control and output control strategies to identify drug targets. Finally, the case studies further demonstrate the role of the combination therapy in two biological networks, which reveals that our proposed SPOC strategy is potentially applicable for more complicated cases.

This work was supported by Natural Sciences and Engineering Research Council of Canada (NSERC), the National Natural Science Foundation of China [61772552], and the Program of Independent Exploration Innovation in Central South University (2019zzts959), the Fundamental Research Funds for the Central Universities, CSU (2282019SYLB004).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barabási, A.L., et al.: Network Science. Cambridge University Press, Cambridge (2016)

    Google Scholar 

  2. Barabási, A.L., Gulbahce, N., Loscalzo, J.: Network medicine: a network-based approach to human disease. Nat. Rev. Genet. 12(1), 56 (2011)

    PubMed  PubMed Central  Google Scholar 

  3. Jeong, H., Mason, S.P., Barabási, A.L., Oltvai, Z.N.: Lethality and centrality in protein networks. Nature 411(6833), 41 (2001)

    CAS  PubMed  Google Scholar 

  4. Winzeler, E.A., et al.: Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285(5429), 901–906 (1999)

    CAS  PubMed  Google Scholar 

  5. Zeng, M., Zhang, F., Wu, F.X., Li, Y., Wang, J., Li, M.: Protein-protein interaction site prediction through combining local and global features with deep neural networks. Bioinformatics 36(4), 1114–1120 (2020)

    PubMed  Google Scholar 

  6. Li, M., Gao, H., Wang, J., Wu, F.X.: Control principles for complex biological networks. Brief. Bioinform. 20(6), 2253–2266 (2019)

    PubMed  Google Scholar 

  7. Guo, W.F., Zhang, S.W., Zeng, T., Akutsu, T., Chen, L.: Network control principles for identifying personalized driver genes in cancer. Brief. Bioinform. (2019)

    Google Scholar 

  8. Liu, Y.Y., Slotine, J.J., Barabási, A.L.: Controllability of complex networks. Nature 473(7346), 167 (2011)

    CAS  PubMed  Google Scholar 

  9. Wu, L., Shen, Y., Li, M., Wu, F.X.: Network output controllability-based method for drug target identification. IEEE Trans. Nanobiosci. 14(2), 184–191 (2015)

    Google Scholar 

  10. Gao, J., Liu, Y.Y., D’souza, R.M., Barabási, A.L.: Target control of complex networks. Nat. Commun. 5, 5415 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Wu, L., Li, M., Wang, J., Wu, F.X.: Minimum steering node set of complex networks and its applications to biomolecular networks. IET Syst. Biol. 10(3), 116–123 (2016)

    PubMed  Google Scholar 

  12. Guo, W.F., et al.: Discovering personalized driver mutation profiles of single samples in cancer by network control strategy. Bioinformatics 34(11), 1893–1903 (2018)

    CAS  PubMed  Google Scholar 

  13. Hu, Y., et al.: Optimal control nodes in disease-perturbed networks as targets for combination therapy. Nat. Commun. 10(1), 2180 (2019)

    PubMed  PubMed Central  Google Scholar 

  14. Wu, L., Tang, L., Li, M., Wang, J., Wu, F.X.: Biomolecular network controllability with drug binding information. IEEE Trans. Nanobiosci. 16(5), 326–332 (2017)

    Google Scholar 

  15. Guo, W.F., et al.: Constrained target controllability of complex networks. J. Stat. Mech: Theory Exp. 2017(6), 063402 (2017)

    Google Scholar 

  16. Müller, F.J., Schuppert, A.: Few inputs can reprogram biological networks. Nature 478(7369), E4 (2011)

    PubMed  Google Scholar 

  17. Kailath, T.: Linear Systems, vol. 156. Prentice-Hall, Englewood Cliffs (1980)

    Google Scholar 

  18. Lin, C.T.: Structural controllability. IEEE Trans. Autom. Control 19(3), 201–208 (1974)

    Google Scholar 

  19. Jungnickel, D.: Graphs, Networks and Algorithms. Springer, Heidelberg (2005). https://doi.org/10.1007/b138283

    Book  Google Scholar 

  20. Crouse, D.F.: On implementing 2D rectangular assignment algorithms. IEEE Trans. Aerosp. Electron. Syst. 52(4), 1679–1696 (2016)

    Google Scholar 

  21. Grieco, L., Calzone, L., Bernard-Pierrot, I., Radvanyi, F., Kahn-Perles, B., Thieffry, D.: Integrative modelling of the influence of mapk network on cancer cell fate decision. PLoS Comput. Biol. 9(10), e1003286 (2013)

    PubMed  PubMed Central  Google Scholar 

  22. Wishart, D.S., et al.: Drugbank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res. 36(suppl–1), D901–D906 (2007)

    PubMed  PubMed Central  Google Scholar 

  23. Frenzel, A., Grespi, F., Chmelewskij, W., Villunger, A.: Bcl2 family proteins in carcinogenesis and the treatment of cancer. Apoptosis 14(4), 584–596 (2009). https://doi.org/10.1007/s10495-008-0300-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lafitte, M., et al.: FGFR3 has tumor suppressor properties in cells with epithelial phenotype. Mol. Cancer 12(1), 83 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Sigismund, S., Avanzato, D., Lanzetti, L.: Emerging functions of the EGFR in cancer. Mol. Oncol. 12(1), 3–20 (2018)

    PubMed  Google Scholar 

  26. Vleugel, M.M., Greijer, A.E., Bos, R., van der Wall, E., van Diest, P.J.: c-jun activation is associated with proliferation and angiogenesis in invasive breast cancer. Hum. Pathol. 37(6), 668–674 (2006)

    CAS  PubMed  Google Scholar 

  27. Raimondi, C., Falasca, M.: Targeting PDK1 in cancer. Curr. Med. Chem. 18(18), 2763–2769 (2011)

    CAS  PubMed  Google Scholar 

  28. Gómez Tejeda Zañudo, J., Scaltriti, M., Albert, R.: A network modeling approach to elucidate drug resistance mechanisms and predict combinatorial drug treatments in breast cancer. Cancer Converg. 1(1), 1–25 (2017). https://doi.org/10.1186/s41236-017-0007-6

    Article  Google Scholar 

  29. Eischen, C., Adams, C., Clark-Garvey, S., Porcu, P.: Targeting the Bcl-2 family in B cell lymphoma. Front. Oncol. 8, 636 (2018)

    PubMed  Google Scholar 

  30. Zou, M., et al.: Knockdown of the Bcl-2 gene increases sensitivity to EGFR tyrosine kinase inhibitors in the H1975 lung cancer cell line harboring T790m mutation. Int. J. Oncol. 42(6), 2094–2102 (2013)

    CAS  PubMed  Google Scholar 

  31. Royce, M.E., Osman, D.: Everolimus in the treatment of metastatic breast cancer. Breast Cancer: Basic Clin. Res. 9, BCBCR–S29268 (2015)

    Google Scholar 

  32. Kornblum, N., et al.: Randomized phase ii trial of fulvestrant plus everolimus or placebo in postmenopausal women with hormone receptor-positive, human epidermal growth factor receptor 2-negative metastatic breast cancer resistant to aromatase inhibitor therapy: results of pre0102. ASCO (2018)

    Google Scholar 

  33. Piha-Paul, S.A., et al.: Phase i study of the pan-HER inhibitor neratinib given in combination with everolimus, palbociclib or trametinib in advanced cancer subjects with EGFR mutation/amplification, HER2 mutation/amplification or HER3/4 mutation (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min Li or Fang-Xiang Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gao, H., Li, M., Wu, FX. (2020). SPOC: Identification of Drug Targets in Biological Networks via Set Preference Output Control. In: Cai, Z., Mandoiu, I., Narasimhan, G., Skums, P., Guo, X. (eds) Bioinformatics Research and Applications. ISBRA 2020. Lecture Notes in Computer Science(), vol 12304. Springer, Cham. https://doi.org/10.1007/978-3-030-57821-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57821-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57820-6

  • Online ISBN: 978-3-030-57821-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics