iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-030-57821-3_25
Deep Ensemble Models for 16S Ribosomal Gene Classification | SpringerLink
Skip to main content

Deep Ensemble Models for 16S Ribosomal Gene Classification

  • Conference paper
  • First Online:
Bioinformatics Research and Applications (ISBRA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 12304))

Included in the following conference series:

Abstract

In bioinformatics analysis, the correct identification of an unknown sequence by subsequent matching with a known sequence is a crucial and critical initial step. One of the constantly evolving open and challenging areas of research is understanding the adaptation of microbiome communities derived from different environment as well as human gut. The critical component of such studies is to analyze 16s rRNA gene sequence and classify it to a corresponding taxonomy. Thus far recent literature discusses such sequence classification tasks being solved using many algorithms such as early methods of k-mer frequency matching, and assembly-based clustering or advanced methods of machine learning algorithms– for instance, random forests, naïve Bayesian techniques, and recently deep learning architectures. Our previous work focused on a comprehensive study of 16s rRNA gene classification by implementing simplistic singular neural models of Recurrent Neural Networks (RNNs) and Convolutional Neural Networks (CNNs). The outcome of this study demonstrated very promising classification results for family, genus and species taxonomic levels, prompting an immediate investigation into deep ensemble models for problem at hand. In this study, we attempt to classify 16s rRNA gene using deep ensemble models along with a hybrid model that emulates an ensemble in its early convolutional layers followed by a recurrent layer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Achtman, M.: A phylogenetic perspective on molecular epidemiology. In: Molecular Medical Microbiology, pp. 485–509. Academic Press (2002)

    Google Scholar 

  2. Ghosh, A., Mehta, A., Khan, A.M.: Metagenomic analysis and its applications. Encycl. Bioinf. Comput. Biol. 3, 184–193 (2019)

    Google Scholar 

  3. Qin, J., et al.: A metagenome-wide association study of gut microbiota in type 2 diabetes. Nat. 490(7418), 55–60 (2012)

    CAS  Google Scholar 

  4. Turnbaugh, P.J., Ley, R.E., Mahowald, M.A., Magrini, V., Mardis, E.R., Gordon, J.I.: An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444(7122), 1027 (2006)

    PubMed  Google Scholar 

  5. Turnbaugh, P.J., et al.: A core gut microbiome in obese and lean twins. Nature 457(7228), 480–484 (2009)

    CAS  PubMed  Google Scholar 

  6. Karlsson, F.H., et al.: Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat. Commun. 3(1), 1–8 (2012)

    Google Scholar 

  7. Janda, J.M., Abbott, S.L.: 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. J. Clin. Microbiol. 45(9), 2761–2764 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Berg, J.M., Tymoczko, J.L., Stryer, L.: Biochemistry. Freeman, New York (2002)

    Google Scholar 

  9. Chakravorty, S., Helb, D., Burday, M., Connell, N., Alland, D.: A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. J. Microbiol. Methods 69(2), 330–339 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Woo, P.C.Y., Lau, S.K.P., Teng, J.L.L., Tse, H., Yuen, K.Y.: Then and now: use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories. Clin. Microbiol. Infect. 14(10), 908–934 (2008)

    CAS  PubMed  Google Scholar 

  11. Woese, C.R.: Bacterial evolution. Microbiol. Rev. 51(2), 221 (1987)

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Fiannaca, A., et al.: Deep learning models for bacteria taxonomic classification of metagenomic data. BMC Bioinform. 19(7), 198 (2018)

    Google Scholar 

  13. Schloss, P.D., et al.: Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75(23), 7537–7541 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Wood, D.E., Salzberg, S.L.: Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 15(3), R46 (2014)

    PubMed  PubMed Central  Google Scholar 

  15. Wang, Q., Garrity, G.M., Tiedje, J.M., Cole, J.R.: Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73(16), 5261–5267 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  16. La Rosa, M., Fiannaca, A., Rizzo, R., Urso, A.: Probabilistic topic modeling for the analysis and classification of genomic sequences. BMC Bioinform. 16(6), S2 (2015)

    Google Scholar 

  17. Zhang, A.B., Sikes, D.S., Muster, C., Li, S.Q.: Inferring species membership using DNA sequences with back-propagation neural networks. Syst. Biol. 57(2), 202–215 (2008)

    CAS  PubMed  Google Scholar 

  18. LeCun, Y.: 1.1 Deep learning hardware: past, present, and future. In: 2019 IEEE International Solid-State Circuits Conference-(ISSCC), pp. 12–19. IEEE, February 2019

    Google Scholar 

  19. Park, Y., Kellis, M.: Deep learning for regulatory genomics. Nat. Biotech. 33(8), 825 (2015)

    CAS  Google Scholar 

  20. Busia, A., et al.: A deep learning approach to pattern recognition for short DNA sequences. bioRxiv, 353474 (2019)

    Google Scholar 

  21. Desai, H.P., Parameshwaran, A.P., Sunderraman, R., Weeks, M.: Comparative study using neural networks for 16S ribosomal gene classification. J. Comput. Biol. 27(2), 248–258 (2020)

    CAS  Google Scholar 

  22. Laboratory for integrated bioinformatics, center for integrative medical sciences, RIKEN. GRD - Genomic-based 16S ribosomal RNA Database (2015)

    Google Scholar 

  23. Rokach, L.: Ensemble-based classifiers. Artif. Intell. Rev. 33(1–2), 1–39 (2010). https://doi.org/10.1007/s10462-009-9124-7

    Article  Google Scholar 

  24. Prabhavalkar, R., Rao, K., Sainath, T.N., Li, B., Johnson, L., Jaitly, N.: A comparison of sequence-to-sequence models for speech recognition. In: Interspeech, pp. 939–943, August 2017

    Google Scholar 

  25. Venugopalan, S., Rohrbach, M., Donahue, J., Mooney, R., Darrell, T., Saenko, K.: Sequence to sequence-video to text. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4534–4542 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Heta P. Desai or Rajshekhar Sunderraman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Desai, H.P., Parameshwaran, A.P., Sunderraman, R., Weeks, M. (2020). Deep Ensemble Models for 16S Ribosomal Gene Classification. In: Cai, Z., Mandoiu, I., Narasimhan, G., Skums, P., Guo, X. (eds) Bioinformatics Research and Applications. ISBRA 2020. Lecture Notes in Computer Science(), vol 12304. Springer, Cham. https://doi.org/10.1007/978-3-030-57821-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57821-3_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57820-6

  • Online ISBN: 978-3-030-57821-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics