iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-030-52485-2_1
Facets of Fairness in Search and Recommendation | SpringerLink
Skip to main content

Facets of Fairness in Search and Recommendation

  • Conference paper
  • First Online:
Bias and Social Aspects in Search and Recommendation (BIAS 2020)

Abstract

Several recent works have highlighted how search and recommender systems exhibit bias along different dimensions. Counteracting this bias and bringing a certain amount of fairness in search is crucial to not only creating a more balanced environment that considers relevance and diversity but also providing a more sustainable way forward for both content consumers and content producers. This short paper examines some of the recent works to define relevance, diversity, and related concepts. Then, it focuses on explaining the emerging concept of fairness in various recommendation settings. In doing so, this paper presents comparisons and highlights contracts among various measures, and gaps in our conceptual and evaluative frameworks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Protected Group. https://en.wikipedia.org/wiki/Protected_group. Accessed 20 Jan 2020

  2. What is Search Neutrality? https://hackernoon.com/what-is-search-neutrality-d05cc30c6b3e. Accessed 20 Jan 2020

  3. Women less likely to be shown ads for high-paid jobs on Google, study shows. https://www.theguardian.com/technology/2015/jul/08/women-less-likely-ads-high-paid-jobs-google-study. Accessed 20 Jan 2020

  4. Abdollahpouri, H., Burke, R., Mobasher, B.: Recommender systems as multistakeholder environments. In: Proceedings of the 25th Conference on User Modeling, Adaptation and Personalization, UMAP 2017. Association for Computing Machinery, New York (2017). https://doi.org/10.1145/3079628.3079657

  5. Abdollahpouri, H., Burke, R.D.: Multi-stakeholder recommendation and its connection to multi-sided fairness. ArXiv abs/1907.13158 (2019)

    Google Scholar 

  6. Amigó, E., Spina, D., Carrillo-de Albornoz, J.: An axiomatic analysis of diversity evaluation metrics: Introducing the rank-biased utility metric. In: The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, SIGIR 2018. Association for Computing Machinery, New York (2018). https://doi.org/10.1145/3209978.3210024

  7. Beutel, A., et al.: Fairness in recommendation ranking through pairwise comparisons. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2019. Association for Computing Machinery, New York (2019). https://doi.org/10.1145/3292500.3330745

  8. Burke, R.: Multisided Fairness for Recommendation. arXiv:1707.00093 [cs], July 2017

  9. Chakraborty, A., Patro, G.K., Ganguly, N., Gummadi, K.P., Loiseau, P.: Equality of voice: towards fair representation in crowdsourced top-k recommendations. In: Proceedings of the Conference on Fairness, Accountability, and Transparency. FAT* 2019. Association for Computing Machinery, New York (2019). https://doi.org/10.1145/3287560.3287570

  10. Datta, A., Tschantz, M.C., Datta, A.: Automated experiments on ad privacy settings: A tale of opacity, choice, and discrimination. ArXiv abs/1408.6491 (2014)

    Google Scholar 

  11. Ferraro, A., Bogdanov, D., Serra, X., Yoon, J.J.: Artist and style exposure bias in collaborative filtering based music recommendations. ArXiv abs/1911.04827 (2019)

    Google Scholar 

  12. Gao, R., Shah, C.: Toward creating a fairer ranking in search engine results. Inf. Process. Manag. 57, (2020). https://doi.org/10.1016/j.ipm.2019.102138

  13. Geyik, S.C., Ambler, S., Kenthapadi, K.: Fairness-aware ranking in search & recommendation systems with application to linkedin talent search. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2019. Association for Computing Machinery, New York (2019). https://doi.org/10.1145/3292500.3330691

  14. Grimmelmann, J.: Some skepticism about search neutrality. Essays on the Future of the Internet, The Next Digital Decade (2011)

    Google Scholar 

  15. Heidari, H., Krause, A.: Preventing disparate treatment in sequential decision making. In: IJCAI (2018)

    Google Scholar 

  16. Ilvento, C., Jagadeesan, M., Chawla, S.: Multi-category fairness in sponsored search auctions. In: Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, FAT* 2020. Association for Computing Machinery, New York (2020). https://doi.org/10.1145/3351095.3372848

  17. Kuhlman, C., VanValkenburg, M., Rundensteiner, E.: Fare: diagnostics for fair ranking using pairwise error metrics. In: The World Wide Web Conference, WWW 2019. Association for Computing Machinery, New York (2019). https://doi.org/10.1145/3308558.3313443

  18. Mehrotra, R., McInerney, J., Bouchard, H., Lalmas, M., Diaz, F.: Towards a fair marketplace: Counterfactual evaluation of the trade-off between relevance, fairness & satisfaction in recommendation systems. In: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, CIKM 2018. Association for Computing Machinery, New York (2018). https://doi.org/10.1145/3269206.3272027

  19. Richardson, M., Dominowska, E., Ragno, R.: Predicting clicks: Estimating the click-through rate for new ads. In: Proceedings of the 16th International Conference on World Wide Web, WWW 2007. Association for Computing Machinery, New York (2007). https://doi.org/10.1145/1242572.1242643

  20. Sakai, T., Craswell, N., Song, R., Robertson, S.E., Dou, Z., Lin, C.Y.: Simple evaluation metrics for diversified search results. In: EVIA@NTCIR (2010)

    Google Scholar 

  21. Serbos, D., Qi, S., Mamoulis, N., Pitoura, E., Tsaparas, P.: Fairness in package-to-group recommendations. In: Proceedings of the 26th International Conference on World Wide Web, WWW 2017, International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, CHE (2017). https://doi.org/10.1145/3038912.3052612

  22. Singh, A., Joachims, T.: Fairness of exposure in rankings. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2018. Association for Computing Machinery, New York (2018). https://doi.org/10.1145/3219819.3220088

  23. Verma, S., Rubin, J.: Fairness definitions explained. In: Proceedings of the International Workshop on Software Fairness, FairWare 2018. Association for Computing Machinery, New York (2018). https://doi.org/10.1145/3194770.3194776

  24. Wan, M., Ni, J., Misra, R., McAuley, J.: Addressing marketing bias in product recommendations. In: Proceedings of the 13th International Conference on Web Search and Data Mining, WSDM 2020. Association for Computing Machinery, New York (2020). https://doi.org/10.1145/3336191.3371855

  25. Wu, Y., Zhang, L., Wu, X.: On discrimination discovery and removal in ranked data using causal graph. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2018. Association for Computing Machinery, New York (2018). https://doi.org/10.1145/3219819.3220087

  26. Yang, K., Stoyanovich, J.: Measuring fairness in ranked outputs. In: Proceedings of the 29th International Conference on Scientific and Statistical Database Management, SSDBM 2017. Association for Computing Machinery, New York (2017). https://doi.org/10.1145/3085504.3085526

  27. Zehlike, M., Bonchi, F., Castillo, C., Hajian, S., Megahed, M., Baeza-Yates, R.: Fa*ir: a fair top-k ranking algorithm. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, CIKM 2017. Association for Computing Machinery, New York (2017). https://doi.org/10.1145/3132847.3132938

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sahil Verma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Verma, S., Gao, R., Shah, C. (2020). Facets of Fairness in Search and Recommendation. In: Boratto, L., Faralli, S., Marras, M., Stilo, G. (eds) Bias and Social Aspects in Search and Recommendation. BIAS 2020. Communications in Computer and Information Science, vol 1245. Springer, Cham. https://doi.org/10.1007/978-3-030-52485-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-52485-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-52484-5

  • Online ISBN: 978-3-030-52485-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics