Abstract
The aim of this research is to analyze brain activity using fNIRS and the Iowa Gambling Task to identify the characteristics of behavior in gaming. Previous studies showed that playing video games influences the functionality of the prefrontal cortex, suggesting that playing games affects cognition. Repeated-measures ANOVA was used to assess the pre-frontal cortex activity of the brain in the two regions of interest (left hemisphere, right hemisphere) during the experiment to determine the changes in prefrontal cortex activation levels in the regions of interest. The same statistical technique was used on the cognitive task to see if more cards from favorable decks were picked by participants as the task progressed. We found that during the completion of the cognitive task, both regions of interest were activated, specifically, the changes in concentration of oxy-hemoglobin in the left hemisphere was significantly higher than the right hemisphere, and participants tended to choose a significantly higher number of cards from the favorable decks during the end of the cognitive task.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
ESA: 2019 essential facts about the computer and video game industry (2019)
Kuss, D.J., Griffiths, M.D.: Internet gaming addiction: a systematic review of empirical research. Int. J. Ment. Health Addict. 10, 278–296 (2012)
Petry, N.M., O’Brien, C.P.: Internet gaming disorder and the DSM-5. Addiction 108, 1186–1187 (2013)
Kaptsis, D., King, D.L., Delfabbro, P.H., Gradisar, M.: Withdrawal symptoms in internet gaming disorder: a systematic review. Clin. Psychol. Rev. 43, 58–66 (2016)
Diagnostic and Statistical Manual of Mental Disorders, 5th edn. DSM-5. American Psychiatric Association (2013)
American psychiatric association considers ‘video game addiction’ (2007)
Internet gaming. https://www.psychiatry.org/patients-families/internet-gaming
Gleich, T., Lorenz, R.C., Gallinat, J., Kühn, S.: Functional changes in the reward circuit in response to gaming-related cues after training with a commercial video game. NeuroImage 152, 467–475 (2017). https://doi.org/10.1016/j.neuroimage.2017.03.032
Wang, P., Zhu, X.-T., Qi, Z., Huang, S., Li, H.-J.: Neural basis of enhanced executive function in older video game players: an fMRI study. Frontiers Aging Neurosci. 9, 382 (2017)
Wenger, E., Kühn, S., Verrel, J., Mårtensson, J., Bodammer, N.C., Lindenberger, U., Lövdén, M.: Repeated structural imaging reveals nonlinear progression of experience-dependent volume changes in human motor cortex. Cereb. Cortex 27, 2911–2925 (2017)
Ayaz, H., Onaral, B., Izzetoglu, K., Shewokis, P.A., McKendrick, R., Parasuraman, R.: Continuous monitoring of brain dynamics with functional near infrared spectroscopy as a tool for neuroergonomic research: empirical examples and a technological development. Frontiers Hum. Neurosci. 7, 871 (2013)
Kim, H.Y., Seo, K., Jeon, H.J., Lee, U., Lee, H.: Application of functional near-infrared spectroscopy to the study of brain function in humans and animal models. Mol. Cells 40, 523 (2017)
Herold, F., Wiegel, P., Scholkmann, F., Mueller, N.G.: Applications of functional near-infrared spectroscopy (fNIRS) neuroimaging in exercise–cognition science: a systematic, methodology-focused review. J. Clin. Med. 7, 466 (2018)
Bunce, S.C., Izzetoglu, M., Izzetoglu, K., Onaral, B., Pourrezaei, K.: Functional near-infrared spectroscopy. IEEE Eng. Med. Biol. Mag. 25, 54–62 (2006)
Pinti, P., Tachtsidis, I., Hamilton, A., Hirsch, J., Aichelburg, C., Gilbert, S., Burgess, P.W.: The present and future use of functional near-infrared spectroscopy (fNIRS) for cognitive neuroscience. Ann. New York Acad. Sci. (2018)
Izzetoglu, M., Bunce, S.C., Izzetoglu, K., Onaral, B., Pourrezaei, K.: Functional brain imaging using near-infrared technology. IEEE Eng. Med. Biol. Mag. 26, 38 (2007)
Ekkekakis, P.: Illuminating the black box: investigating prefrontal cortical hemodynamics during exercise with near-infrared spectroscopy. J. Sport Exerc. Psychol. 31, 505–553 (2009)
Obrig, H., Wenzel, R., Kohl, M., Horst, S., Wobst, P., Steinbrink, J., Thomas, F., Villringer, A.: Near-infrared spectroscopy: does it function in functional activation studies of the adult brain? Int. J. Psychophysiol. 35, 125–142 (2000)
Bechara, A., Damasio, A.R., Damasio, H., Anderson, S.W.: Insensitivity to future consequences following damage to human prefrontal cortex. Cognition 50, 7–15 (1994)
Aram, S., Levy, L., Patel, J.B., Anderson, A.A., Zaragoza, R., Dashtestani, H., Chowdhry, F.A., Gandjbakhche, A., Tracy, J.K.: The Iowa gambling task: a review of the historical evolution, scientific basis, and use in functional neuroimaging. SAGE Open. 9, 2158244019856911 (2019)
Psychology software tools, inc. [E-prime 3.0] (2016)
Ayaz, H., Izzetoglu, M., Shewokis, P.A., Onaral, B.: Sliding-window motion artifact rejection for functional near-infrared spectroscopy. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, pp. 6567–6570. IEEE (2010)
Delpy, D.T., Cope, M., van der Zee, P., Arridge, S., Wray, S., Wyatt, J.: Estimation of optical pathlength through tissue from direct time of flight measurement. Phys. Med. Biol. 33, 1433 (1988)
R Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2018)
Singmann, H., Bolker, B., Westfall, J., Aust, F., Ben-Shachar, M.S.: Afex: analysis of factorial experiments (2019)
Lenth, R.: Emmeans: estimated marginal means, aka least-squares means (2019)
Acknowledgments
We acknowledge that this research was supported by funding from the Presidential Research Grant 2019 of the Harrisburg University of Science and Technology.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Kora Venu, S., Sadeghian, R., Sardari, S.E., Dashtestani, H., Gandjbakhche, A., Aram, S. (2021). Neural Correlation of Brain Activities and Gaming Using Functional Near-Infrared Spectroscopy and Iowa Gambling Task. In: Ayaz, H., Asgher, U. (eds) Advances in Neuroergonomics and Cognitive Engineering. AHFE 2020. Advances in Intelligent Systems and Computing, vol 1201. Springer, Cham. https://doi.org/10.1007/978-3-030-51041-1_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-51041-1_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-51040-4
Online ISBN: 978-3-030-51041-1
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)