Abstract
This paper proposes a novel approach to compute information theory measures from Gaussian Markov Random Field (GMRF) for color texture classification task. We firstly transform the three color channels of the input image into three set of sub-bands of the form LL, HH, HL and LH using three Discret Wavelet Transforms. We then visualize each sub-band as a GMRF from which we generate features by computing Fisher information matrix and Shannon’s entropy to encode the local spatial dependency. The concatenation of the computed features are then used as the texture descriptor, which in turn is used as input for the classifiers referred to in this work. Experiments were performed with color texture images from public databases widely used in the literature that demonstrate the efficiency of the proposed method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Khan, F.S., van de Weijer, J., Vanrell, M.: Top-down color attention for object recognition. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 979–986 (2009)
van de Sande, K., Gevers, T., Snoek, C.: Evaluating color descriptors for object and scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1582–1596 (2010)
Nilsback, M., Zisserman, A.: Automated flower classification over a large number of classes. In: 2008 Sixth Indian Conference on Computer Vision, Graphics Image Processing, pp. 722–729, December 2008
Qi, X., Xiao, R., Li, C., Qiao, Y., Guo, J., Tang, X.: Pairwise rotation invariant co-occurrence local binary pattern. IEEE Trans. Pattern Anal. Mach. Intell. 36(11), 2199–2213 (2014)
Pietikainen, M., Maenpaa, T., Viertola, J.: Color texture classification with color histograms and local binary patterns. In: Workshop on Texture Analysis in Machine Vision, January 2002
Li, W., Fritz, M.: Recognizing materials from virtual examples. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7575, pp. 345–358. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33765-9_25
Sharan, L., Liu, C., Rosenholtz, R., Adelson, E.H.: Recognizing materials using perceptually inspired features. Int. J. Comput. Vision 103(3), 348–371 (2013)
Hayman, E., Caputo, B., Fritz, M., Eklundh, J.-O.: On the significance of real-world conditions for material classification. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3024, pp. 253–266. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24673-2_21
Kwitt, R., Meerwald, P.: Salzburg texture image database. http://www.wavelab.at/sources/STex/. Accessed Feb 2018
Jiang, L., Rich, W., Buhl-Brown, D.: Texture analysis of remote sensing imagery with clustering and Bayesian inference. Int. J. Image Graph. Sig. Proces. 7, 1–10 (2015)
Lerski, R.A., Straughan, K., Schad, L.R., Boyce, D.V.M., Bluml, S., Zuna, I.: MR image texture analysis-an approach to tissue characterization. Magn. Reson. Imaging 11(6), 873–87 (1993)
Westerink, P.H., Biemond, J., Boekee, D.E.: Sub-band Image Coding, Kluwer Academic (1991). chapter Sub-band coding of color images
Mallat, S.G.: A theory of multiresolution image decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 647–693 (1989)
Do, M.N., Vetterli, M.: Wavelet-based texture retrieval using generalized Gaussian density and Kullback-Leibler distance. IEEE Trans. Image Process. 11(2), 146–158 (2002). https://doi.org/10.1109/83.982822
Allili, M.S.: Wavelet modeling using finite mixtures of generalized Gaussian distributions: application to texture discrimination and retrieval. IEEE Trans. Image Process. 21(4), 1452–1464 (2012). https://doi.org/10.1109/TIP.2011.2170701
Li, S.Z.: Markov Random Field Modeling in Image Analysis. Springer, Berlin (2001). https://doi.org/10.1007/978-4-431-67044-5
Petrou, M., Sevilla, P.G.: Image Processing. Texture: Dealing with Texture, 1st edn. Wiley John and Sons, West Sussex (2006)
Van de Wouwer, G., Scheunders, P., Dyck, D.: Statistical texture characterization from discrete wavelet representation. IEEE Trans. Image Process. 8, 592–598 (1999). https://doi.org/10.1109/83.753747
Vetterli, M., Kovacevic, J.: Wavelets and Subband Coding. Prentice-Hall, Englewood Cliffs (1995)
Raju, U.S.N., Vijaya Kumar, V., et al.: Texture classification based on extraction of skeleton primitives using wavelets. Inf. Technol. J. 7(6), 883–889 (2008)
Ong, S., Jin, X., Jayasooriah, Sinniah, R.: Image analysis of tissue sections. Comput. Biol. Med. 26(3), 269–279 (1996). Information Retrieval and Genomics
Liu, L., Chen, J., Fieguth, P., Zhao, G., Chellappa, R., Pietikainen, M.: From bow to CNN: two decades of texture representation for texture classification. Int. J. Comput. Vision 127(1), 74–109 (2019)
Pietikainen, M., Hadid, A., Zhao, G., Ahonen, T.: Computer Vision Using Local Binary Patterns. Computational Imaging and Vision. Springer, London (2011). https://doi.org/10.1007/978-0-85729-748-8. https://books.google.com.br/books?id=wBrZz9FiERsC
Hammersley, J.M., Clifford, P.: Markov field on finite graphs and lattices, preprint (1971). www.statslab.cam.ac.uk/grg/books/hammfest/hamm-cliff.pdf
Haralick, R., Shanmugam, K., Dinstein, I.: Texture features for image classification. IEEE Trans. Syst. Man Cybern. 3, 610–621 (1973)
Haralick, R.M.: Statistical and structural approaches to texture. Proc. IEEE 67, 786–804 (1979). https://doi.org/10.1109/proc.1979.11328
Dalal, N., Triggs, B.:. Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 1, pp. 886–893 (2005). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1467360
Qi, X., Qiao, Y., Li, C.-G., Guo, J.: Exploring Cross-Channel Texture Correlation for Color Texture Classification (2013). https://doi.org/10.5244/C.27.97
Fujieda, S., Takayama, K., Hachisuka, T.: Wavelet convolutional neural networks for texture classification. arXive-prints, arXiv:1707.07394, July 2017
Hafemann, L.G., Oliveira, L.S., Cavalin, P.: Forest species recognition using deep convolutional neural net-works. In: 2014 22nd International Conference on Pattern Recognition, pp. 1103–1107, August 2014
Cimpoi, M., Maji, S., Kokkinos, I., Vedaldi, A.: Deep filter banks for texture recognition, description, and segmentation. Int. J. Comput. Vision 118(1), 65–94 (2016)
Besag, J.: Spatial interaction and the statistical analysis of lattice systems. J. Roy. Stat. Soc. Ser. B. 36, 192–236 (1974)
Andrearczyk, V., Whelan, P.: Using filter banks in convolutional neural networks for texture classification. Pattern Recogn. Lett. 84, 63–69 (2016)
Zhao, Y., Zhang, L., Li, P., Huang, B.: Classification of high spatial resolution imagery using improved Gaussian Markov random-field-based texture features. IEEE Trans. Geosci. Remote Sens. 45(5), 1458–1468 (2007)
Shannon, C., Weaver, W.: The Mathematical Theory of Communication. University of Illinois Press, Urbana (1949)
Frieden, B.R.: Science from Fisher Information: A Unification. Cambridge University Press, Cambridge (2004)
Frieden, B.R., Gatenby, R.A.: Exploratory Data Analysis Using Fisher Information. Springer, London (2006). https://doi.org/10.1007/978-1-84628-777-0
Hafner, G.M., Liedlgruber, A., Uhl, M., Vécsei, A., Wrba, F.: Combining Gaussian Markov random fields with the discrete-wavelet transform for endoscopic image classification. In: DSP 2009: 16th International Conference on Digital Signal Processing, Proceedings, pp. 1–6 (2009). https://doi.org/10.1109/ICDSP.2009.5201226
Mani, M.R., Subbaiah, K.V.: Texture Classification Method using Wavelet Transforms Based on Gaussian Markov Random Field (2010)
Porter, R., Canagarajah, N.: Robust rotation-invariant texture classification: wavelet, Gabor filter and GMRF based schemes. IEE Proc. Vision Image Sig. Process. 144(3), 180–188 (1997). https://doi.org/10.1049/ip-vis:19971182
Levada, A.L.M.: learning from complex systems: on the roles of entropy and fisher information in pairwise isotropic Gaussian Markov random fields. Entropy, Special Issue Inf. Geometry. 16, 1002–1036 (2014)
Levada, A.L.M.: Information geometry, simulation and complexity in Gaussian random fields. Monte Carlo Methods Appl. 22(2), 81–107 (2016)
Nsimba, C.B., Levada, A.L.M.: Nonlinear dimensionality reduction in texture classification: is manifold learning better than PCA? In: Rodrigues, J.M.F., et al. (eds.) ICCS 2019. LNCS, vol. 11540, pp. 191–206. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22750-0_15
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Nsimba, C.B., Levada, A.L.M. (2020). Exploring Information Theory and Gaussian Markov Random Fields for Color Texture Classification. In: Campilho, A., Karray, F., Wang, Z. (eds) Image Analysis and Recognition. ICIAR 2020. Lecture Notes in Computer Science(), vol 12132. Springer, Cham. https://doi.org/10.1007/978-3-030-50516-5_12
Download citation
DOI: https://doi.org/10.1007/978-3-030-50516-5_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-50515-8
Online ISBN: 978-3-030-50516-5
eBook Packages: Computer ScienceComputer Science (R0)