Abstract
Microwave radiometry has seen its way in successful usage in medical applications. The focus here is its applicability in cancer detection and monitoring, specifically for breast cancer, as an additional and alternative tool. This is done by capturing the temperature of the skin and the internal tissue. However, the amount of data required by clinical specialist to process in a short time to reach to a confident decision is becoming insurmountable. This can be tackled by developing a diagnostic system that will help pinpoint irregularities associated with pathologies. The key factors of a successful diagnostic system is the accuracy of the predictions and its informativeness and interpretability. The core component of such a system is a machine learning algorithm. Models that were explored were random forest, k-nearest neighbors, support vector machines, variants of cascade correlation neural networks, deep neural network and convolution neural network. From all these models evaluated, the best performing on the test set was the deep neural network. Also, we proposed a method for forming the space of thermometric features, which at the same time ensures a sufficiently high efficiency of the classification algorithms. More importantly, the model is inherently able to provide an explanation of the diagnostic solution.
AL and VL are grateful to Russian Foundation for Basic Research (grant No RFBR 19-01-00358) for the financial support of the development of mathematical models for early diagnosis of breast cancer.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation, OSDI 2016, pp. 265–283. USENIX Association, Berkeley (2016)
Anisimova, E.V., Zamechnik, T.V., Larin, S.I., Losev, A.G.: Teoreticheskie issledovaniya otdelnih fizicheskih i fiziologicheskih faktorov vliyayuschih na kachestvo obsledovaniya pacientov s varikoznoi boleznyu ven nijnih konechnostei metodom kombinirovannoi termografii [the theoretical research of separate physical and physiological factors influencing the quality of checking up patients with venous varicosity of lower extremities by the method of combined thermography]. Vestnik novih medicinskih tehnologii [J. New Med. Technol.] 18(4), 280–282 (2011)
Arajo, T., et al.: Classification of breast cancer histology images using convolutional neural networks. PLoS ONE 12(6), 1–14 (2017)
Barandela, R., Sanchez, J., Garca, V., Rangel, E.: Strategies for learning in class imbalance problems. Pattern Recogn. 36, 849–851 (2003)
Bergstra, J., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-parameter optimization. In: Proceedings of the 24th International Conference on Neural Information Processing Systems, NIPS 2011, pp. 2546–2554. Curran Associates Inc., USA (2011)
Bergstra, J., Yamins, D., Cox, D.D.: Hyperopt: a python library for optimizing the hyperparameters of machine learning algorithms (2015)
Bishop, C.M.: Pattern Recognition and Machine Learning. Information Science and Statistics. Springer, Heidelberg (2006)
Bochkarev, O.A., Zenovich, A.V., Losev, A.G.: Regressionnaya model diagnostiki patologiy molochnykh zhelez po dannym mikrovolnovoy radiotermometrii [regression model for diagnosis of breast pathology according to microwaves radiometry data]. Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica [Sci. J. Volgograd State Uni. Math. Phy.] 6(31), 72–82 (2015)
Bondar, S.S., Terekhov, I.V., Voevodin, A.A., Leonov, B.I., Khadartsev, A.A.: Assessment of transcapillary water exchange in the lungs by active radiometry. Biomed. Eng. 51(3), 211–214 (2017)
Bottou, L.: Large-scale machine learning with stochastic gradient descent. In: Lechevallier, Y., Saporta, G. (eds.) Proceedings of COMPSTAT 2010, pp. 177–186. Physica-Verlag, Heidelberg (2010). https://doi.org/10.1007/978-3-7908-2604-3_16
Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
Burges, C.J.C.: A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Disc. 2, 121–167 (1998)
Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority oversampling technique. J. Artif. Int. Res. 16(1), 321–357 (2002)
Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2016, pp. 785–794. ACM, New York (2016)
Chollet, F.: Xception: Deep learning with depthwise separable convolutions. CoRR, abs/1610.02357 (2016)
Chollet, F., et al.: Keras (2015). https://keras.io
Cireşan, D.C., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Mitosis detection in breast cancer histology images with deep neural networks. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 411–418. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40763-5_51
Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)
Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theor. 13(1), 21–27 (2006)
Crandall, J.P., et al.: Measurement of brown adipose tissue activity using microwave radiometry and 18F-FDG PET/CT. J. Nucl. Med. 59(8), 1243–1248 (2018)
de Boer, P.-T., Kroese, D.P., Mannor, S., Rubinstein, R.Y.: A tutorial on the cross-entropy method. Ann. Oper. Res. 134(1), 19–67 (2005)
Drakopoulou, M., Moldovan, C., Toutouzas, K., Tousoulis, D.: The role of microwave radiometry in carotid artery disease diagnostic and clinical prospective. Curr. Opin. Pharmacol. 39, 99–104 (2018)
Fahlman, S.E., Lebiere, C.: The cascade-correlation learning architecture. In: Advances in Neural Information Processing Systems 2, pp. 524–532. Morgan Kaufmann Publishers Inc., San Francisco (1990)
Gabriel, S., Lau, R.W., Gabriel, C.: The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys. Med. Biol. 41(11), 2251 (1996)
Gabriel, S., Lau, R.W., Gabriel, C.: The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys. Med. Biol. 41(11), 2271 (1996)
Galazis, C., Vesnin, S., Goryanin, I.: Application of artificial intelligence in microwave radiometry (MWR). In: Proceedings of the 12th International Joint Conference on Biomedical Engineering Systems and Technologies, vol. 3, pp. 112–122 (2019). https://doi.org/10.5220/0007567901120122
Gautherie, M.: Thermopathology of breast cancer: measurement and analysis of in vivo temperature and blood flow. Ann. N. Y. Acad. Sci. 335(1), 383–415 (1980)
Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Teh, Y.W., Titterington, M. (eds.) Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research, vol. 9, pp. 249–256. PMLR, Sardinia (2010)
Han, H., Wang, W.-Y., Mao, B.-H.: Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning. In: Huang, D.-S., Zhang, X.-P., Huang, G.-B. (eds.) ICIC 2005. LNCS, vol. 3644, pp. 878–887. Springer, Heidelberg (2005). https://doi.org/10.1007/11538059_91
He, H., Bai, Y., Garcia, E.A., Li, S.: ADASYN: adaptive synthetic sampling approach for imbalanced learning. In: 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), pp. 1322–1328 (2008)
He, H., Ma, Y.: Imbalanced Learning: Foundations, Algorithms, and Applications, 1st edn. Wiley-IEEE Press (2013)
Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. CoRR, abs/1502.03167 (2015)
Ivanov, Y., et al.: Use of microwave radiometry to monitor thermal denaturation of albumin. Front. Physiol. 9, 956 (2018)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR, abs/1412.6980 (2014)
Kim, B., et al.: Interpretability beyond feature attribution: quantitative testing with concept activation vectors (TCAV). In: International Conference on Machine Learning (2018)
Kobrinskii, B.A.: Konsul’tativnye intellektual’nye medicinskie sistemy: klassifikaciya, principy postroeniya, effektivnost’ [Advisory intelligent medical systems: classification, principles of construction, efficiency]. Vrach i informacionnye tekhnologii [Inf. Technol. Phys.] 2, 38–47 (2008)
Krawczyk, B.: Learning from imbalanced data: open challenges and future directions. Prog. Artif. Intell. 5(4), 221–232 (2016)
Kubat, M., Matwin, S.: Addressing the curse of imbalanced training sets: one-sided selection. In: Proceedings of the Fourteenth International Conference on Machine Learning, pp. 179–186. Morgan Kaufmann (1997)
Laskari, K., Pitsilka, D., Pentazos, G., Siores, E., Tektonidou, M., Sfikakis, P.: SAT0657 microwave radiometry-derived thermal changes of sacroiliac joints as a biomarker of sacroiliitis in patients with spondyloarthropathy. Ann. Rheum. Dis. 77(Suppl. 2), 1178 (2018)
Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)
Lim, T.-S., Loh, W.-Y., Shih, Y.-S.: A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms. Mach. Learn. 40(3), 203–228 (2000)
Lin, M., Chen, Q., Yan, S.: Network in network. CoRR, abs/1312.4400 (2013)
Losev, A.G., Mazepa, E.A., Suleymanova, Kh.M.: O vzaimosvyazi nekotorykh priznakov RTM-diagnostiki zabolevaniy molochnykh zhelez [on interrelation of some signs of RTM diagnostics of mammary glands deseases]. Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica [Sci. J. Volgograd State Univ. Math. Phy.] 4(229), 35–44 (2015)
Losev, A.G., Levshinskii, V.V.: Intellektual’nyj analiz dannyh mikrovolnovoj radiotermometrii v diagnostike raka molochnoj zhelezy [Data mining of microwave radiometry data in the diagnosis of breast cancer]. Matematicheskaya fizika i komp’yuternoe modelirovanie [Math. Phys. Comput. Simul.] 20(5), 49–62 (2017)
Lundberg, S., Lee, S.-I.: A unified approach to interpreting model predictions. CoRR, abs/1705.07874 (2017)
Mazepa, E.A., Suleymanova, Kh.M.: Ob optimizacii chisla diagnosticheskih priznakov zabolevanii molochnih jelez na osnove termometricheskih dannih [On optimization of the number of diagnostic signs for breast diseases through thermometric data]. Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica [Sci. J. Volgograd State Univ. Math. Phys.] 6(37), 128–140 (2016)
Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on International Conference on Machine Learning, ICML 2010, pp. 807–814. Omnipress, USA (2010)
Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
Pentazos, G., Laskari, K., Prekas, K., Raftakis, J., Sfikakis, P., Siores, E.: Microwave radiometry-derived thermal changes of small joints as additional potential biomarker in rheumatoid arthritis: a prospective pilot study. J. Clin. Rheumatol. 24(1), 259–263 (2018)
Polyakov, M.V., Khoperskov, A.V., Zamechnic, T.V.: Numerical modeling of the internal temperature in the mammary gland. In: Siuly, S., et al. (eds.) HIS 2017. LNCS, vol. 10594, pp. 128–135. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69182-4_14
Ribeiro, M.T., Singh, S., Guestrin, C.: “Why Should I Trust You?”: explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2016), pp. 1135–1144. ACM, New York (2016). https://doi.org/10.1145/2939672.2939778
Rodrigues, D.B., et al.: Numerical 3D modeling of heat transfer in human tissues for microwave radiometry monitoring of brown fat metabolism. In: Proceeding of SPIE, vol. 8584 (2013)
Rodrigues, D.B., Stauffer, P.R., Pereira, P.J.S., Maccarini, P.F.: Microwave radiometry for noninvasive monitoring of brain temperature. In: Crocco, L., Karanasiou, I., James, M.L., Conceição, R.C. (eds.) Emerging Electromagnetic Technologies for Brain Diseases Diagnostics, Monitoring and Therapy, pp. 87–127. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75007-1_5
Saniei, E., Setayeshi, S., Akbari, M.E., Navid, M.: Parameter estimation of breast tumour using dynamic neural network from thermal pattern. J. Adv. Res. 7(6), 1045–1055 (2016)
Schneider, B.P., Miller, K.D.: Angiogenesis of breast cancer. J. Clin. Oncol. 23(8), 1782–1790 (2005). PMID: 15755986
Schönberger, D.: Artificial intelligence in healthcare: a critical analysis of the legal and ethical implications. Int. J. Law Inf. Technol. 27(2), 171–203 (2019). https://doi.org/10.1093/ijlit/eaz004
Semenov, S.: Microwave tomography: review of the progress towards clinical applications. Philos. Trans. Math. Phys. Eng. Sci. 367(1900), 3021–3042 (2009)
Spanhol, F.A., Oliveira, L.S., Petitjean, C., Heutte, L.: Breast cancer histopathological image classification using convolutional neural networks. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp. 2560–2567 (2016)
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)
Tompson, J., Goroshin, R., Jain, A., LeCun, Y., Bregler, C.: Efficient object localization using convolutional networks. CoRR, abs/1411.4280 (2014)
Wilkins, M.F., Boddy, L., Morris, C.W., Jonker, R.: A comparison of some neural and non-neural methods for identification of phytoplankton from flow cytomery data. Bioinformatics 12(1), 9–18 (1996)
Zamechnik, T.V., Larin, S.I., Losev, A.G.: Kombinirovannaya radiotermometriya kak metod issledovaniya venoznogo krovoobrascheniya nijnih konechnostei [Combined radiothermometry as a method for the study of venous circulation of the lower extremities] Volgograd. 252 p. (2015)
Zamechnik, T.V., Mazepa, E.A., Cherkesova, S.I., Pankova, J.V.: K voprosu ob optimizacii skriningovogo obsledovaniya molochnih jelez metodom mikrovolnovoi radiotermometrii [About the optimization of breast screening by means of microwave radiothermometry]. J. New Med. Technol. 21(4), 34–38 (2014)
Zenovich, A.V., Glazunov, V.A., Oparin, A.S., Primachenko, F.G.: Algoritmy prinyatiya resheniy v konsultativnoy intellektualnoy sisteme diagnostiki molochnykh zhelez [Algorithms of decision-making in the advisory intellectual system of diagnostics of mammary glands]. Math. Phys. Comput. Model. 6, 129–142 (2016)
Zenovich, A.V., Grebnev, V.I., Primachenko, F.G.: Algoritmy klassifikacii zabolevanij parnyh organov na osnove nejrosetej i nechetkih mnozhestv [Algorithms for the classification of diseases of paired organs on the basis of neural networks and fuzzy sets]. Matematicheskaya fizika i komp’yuternoe modelirovanie [Math. Phys. Comput. Simul.] 20(6), 26–37 (2017)
Vesnin, S., Turnbull, A.K., Dixon, J.M., Goryanin, I.: Modern microwave thermometry for breast cancer. J. Mol. Imaging Dyn. 7(2) (2017). https://doi.org/10.4172/2155-9937.1000136
Zadeh, H.G., Montazeri, A., Kazerouni, I.A., Haddadnia, J.: Clustering and screening for breast cancer on thermal images using a combination of SOM and MLP. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 5(1), 68–76 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Levshinskii, V., Galazis, C., Ovchinnikov, L., Vesnin, S., Losev, A., Goryanin, I. (2020). Application of Data Mining and Machine Learning in Microwave Radiometry (MWR). In: Roque, A., et al. Biomedical Engineering Systems and Technologies. BIOSTEC 2019. Communications in Computer and Information Science, vol 1211. Springer, Cham. https://doi.org/10.1007/978-3-030-46970-2_13
Download citation
DOI: https://doi.org/10.1007/978-3-030-46970-2_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-46969-6
Online ISBN: 978-3-030-46970-2
eBook Packages: Computer ScienceComputer Science (R0)