iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-030-46640-4_8
Global and Local Multi-scale Feature Fusion Enhancement for Brain Tumor Segmentation and Pancreas Segmentation | SpringerLink
Skip to main content

Global and Local Multi-scale Feature Fusion Enhancement for Brain Tumor Segmentation and Pancreas Segmentation

  • Conference paper
  • First Online:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11992))

Included in the following conference series:

Abstract

The fully convolutional networks (FCNs) have been widely applied in numerous medical image segmentation tasks. However, tissue regions usually have large variations of shape and scale, so the ability of neural networks to learn multi-scale features is important to the segmentation performance. In this paper, we improve the network for multi-scale feature fusion, in the medical image segmentation by introducing two feature fusion modules: i) global attention multi-scale feature fusion module (GMF); ii) local dense multi-scale feature fusion module (LMF). GMF aims to use global context information to guide the recalibration of low-level features from both spatial and channel aspects, so as to enhance the utilization of effective multi-scale features and suppress the noise of low-level features. LMF adopts bottom-up top-down structure to capture context information, to generate semantic features, and to fuse feature information at different scales. LMF can integrate local dense multi-scale context features layer by layer in the network, thus improving the ability of network to encode interdependent relationships among boundary pixels. Based on the above two modules, we propose a novel medical image segmentation framework (GLF-Net). We evaluated the proposed network and modules on challenging brain tumor segmentation and pancreas segmentation datasets, and very competitive performance has been achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://medicaldecathlon.com/.

References

  1. Qin, Y., et al.: Autofocus layer for semantic segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11072, pp. 603–611. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00931-1_69

    Chapter  Google Scholar 

  2. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  3. Wang, H., Gu, R., Li, Z.: Automated segmentation of intervertebral disc using fully dilated separable deep neural networks. In: Zheng, G., Belavy, D., Cai, Y., Li, S. (eds.) CSI 2018. LNCS, vol. 11397, pp. 66–76. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-13736-6_6

    Chapter  Google Scholar 

  4. Yu, C., Wang, J., Peng, C., Gao, C., Yu, G., Sang, N.: Learning a discriminative feature network for semantic segmentation. In: CVPR, pp. 1857–1866 (2018)

    Google Scholar 

  5. Roy, A.G., Navab, N., Wachinger, C.: Concurrent spatial and channel ‘squeeze & excitation’ in fully convolutional networks. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 421–429. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_48

    Chapter  Google Scholar 

  6. Farabet, C., Couprie, C., Najman, L., LeCun, Y.: Learning hierarchical features for scene labeling. IEEE Trans. PAMI 35(8), 1915–1929 (2013)

    Article  Google Scholar 

  7. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: CVPR, pp. 2881–2890 (2017)

    Google Scholar 

  8. Oktay, O., Schlemper, J., Folgoc, L.L., Lee, M., Heinrich, M.: Attention U-Net: learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 (2018)

  9. Wu, Y., He, K.: Group normalization. arXiv preprint arXiv:1803.08494 (2018)

  10. Menze, B.H., Jakab, A., Bauer, S., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE TMI 34(10), 1993–2024 (2015)

    Google Scholar 

  11. Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J.S., et al.: Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features. Nature Sci. Data 4, 170117 (2017)

    Google Scholar 

  12. Bakas, S., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS Challenge. arXiv preprint arXiv:1811.02629 (2018)

  13. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. The Cancer Imaging Archive (2017)

    Google Scholar 

  14. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. The Cancer Imaging Archive (2017)

    Google Scholar 

  15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guotai Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, H., Wang, G., Liu, Z., Zhang, S. (2020). Global and Local Multi-scale Feature Fusion Enhancement for Brain Tumor Segmentation and Pancreas Segmentation. In: Crimi, A., Bakas, S. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2019. Lecture Notes in Computer Science(), vol 11992. Springer, Cham. https://doi.org/10.1007/978-3-030-46640-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46640-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46639-8

  • Online ISBN: 978-3-030-46640-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics