Abstract
The key encapsulation method “NewHope” allows two parties to agree on a secret key. The scheme includes a private and a public key. While the public key is used to encipher a random shared secret, the private key enables to decipher the ciphertext. NewHope is a candidate in the NIST post-quantum project, whose aim is to standardize cryptographic systems that are secure against attacks originating from both quantum and classical computers. While NewHope relies on the theory of quantum-resistant lattice problems, practical implementations have shown vulnerabilities against side-channel attacks targeting the extraction of the private key. In this paper, we demonstrate a new attack on the shared secret. The target consists of the C reference implementation as submitted to the NIST contest, being executed on a Cortex-M4 processor. Based on power measurement, the complete shared secret can be extracted from data of one single trace only. Further, we analyze the impact of different compiler directives. When the code is compiled with optimization turned off, the shared secret can be read from an oscilloscope display directly with the naked eye. When optimizations are enabled, the attack requires some more sophisticated techniques, but the attack still works on single power traces.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978). https://doi.org/10.1145/359340.359342
Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997). https://doi.org/10.1137/S0097539795293172
Dyakonov, M.: The case against quantum computing. IEEE Spectr. 56(3), 24–29 (2019)
Mosca, M.: Cybersecurity in an era with quantum computers: will we be ready? IEEE Secur. Priv. 16(5), 38–41 (2018). https://doi.org/10.1109/MSP.2018.3761723
National Institute of Standards and Technology: Submission requirements and evaluation criteria for the post-quantum cryptography standardization process (2016)
Alagic, G., et al.: Status report on the first round of the NIST post-quantum cryptography standardization process. NISTIR 8240 (2019). https://doi.org/10.6028/NIST.IR.8240
Alkim, E., et al.: NewHope - algorithm specifications and supporting documentation. Version 1.02 (2019)
Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: NewHope without reconciliation. IACR Cryptology ePrint Archive, p. 1157 (2016). http://eprint.iacr.org/2016/1157
Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange - a new hope. In: 25th USENIX Security Symposium, USENIX Security 2016, Austin, TX, USA, 10–12 August 2016, pp. 327–343 (2016)
Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_1
Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Proceedings of the 37th Annual ACM Symposium on Theory of Computing, Baltimore, MD, USA, 22–24 May 2005, pp. 84–93 (2005). https://doi.org/10.1145/1060590.1060603
Regev, O.: The learning with errors problem (invited survey). In: Proceedings of the 25th Annual IEEE Conference on Computational Complexity, CCC 2010, Cambridge, Massachusetts, USA, 9–12 June 2010, pp. 191–204 (2010). https://doi.org/10.1109/CCC.2010.26
Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5_9
Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_25
Mulder, E.D., et al.: Electromagnetic analysis attack on an FPGA implementation of an elliptic curve cryptosystem. In: EUROCON 2005 - The International Conference on “Computer as a Tool”, vol. 2, pp. 1879–1882 (2005). https://doi.org/10.1109/EURCON.2005.1630348
Primas, R., Pessl, P., Mangard, S.: Single-trace side-channel attacks on masked lattice-based encryption. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 513–533. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4_25
Aysu, A., Tobah, Y., Tiwari, M., Gerstlauer, A., Orshansky, M.: Horizontal side-channel vulnerabilities of post-quantum key exchange protocols. In: 2018 IEEE International Symposium on Hardware Oriented Security and Trust, HOST 2018, Washington, DC, USA, 30 April–4 May 2018, pp. 81–88 (2018). https://doi.org/10.1109/HST.2018.8383894
Bos, J.W., et al.: Frodo: take off the ring! practical, quantum-secure key exchange from LWE. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria, 24–28 October 2016, pp. 1006–1018 (2016). https://doi.org/10.1145/2976749.2978425
Park, A., Han, D.: Chosen ciphertext simple power analysis on software 8-bit implementation of ring-LWE encryption. In: 2016 IEEE Asian Hardware-Oriented Security and Trust, AsianHOST 2016, Yilan, Taiwan, 19–20 December 2016, pp. 1–6 (2016). https://doi.org/10.1109/AsianHOST.2016.7835555
Huang, W., Chen, J., Yang, B.: Correlation power analysis on NTRU prime and related countermeasures. IACR Cryptology ePrint Archive, p. 100 (2019). https://eprint.iacr.org/2019/100
Zheng, X., Wang, A., Wei, W.: First-order collision attack on protected NTRU cryptosystem. Microprocess. Microsyst. Embed. Hardw. Design 37(6–7), 601–609 (2013). https://doi.org/10.1016/j.micpro.2013.04.008
Reparaz, O., Roy, S.S., de Clercq, R., Vercauteren, F., Verbauwhede, I.: Masking ring-LWE. J. Cryptogr. Eng. 6(2), 139–153 (2016). https://doi.org/10.1007/s13389-016-0126-5
Reparaz, O., de Clercq, R., Roy, S.S., Vercauteren, F., Verbauwhede, I.: Additively homomorphic ring-LWE masking. In: Takagi, T. (ed.) PQCrypto 2016. LNCS, vol. 9606, pp. 233–244. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29360-8_15
Oder, T., Schneider, T., Pöppelmann, T., Güneysu, T.: Practical CCA2-secure and masked ring-LWE implementation. IACR Trans. Cryptogr. Hardw. Embed. Syst., 142–174 (2018). https://doi.org/10.13154/tches.v2018.i1.142-174
Fluhrer, S.R.: Cryptanalysis of ring-LWE based key exchange with key share reuse. IACR Cryptology ePrint Archive, p. 85 (2016). http://eprint.iacr.org/2016/085
Ding, J., Alsayigh, S., Saraswathy, R.V., Fluhrer, S.R., Lin, X.: Leakage of signal function with reused keys in RLWE key exchange. In: IEEE International Conference on Communications, ICC 2017, Paris, France, 21–25 May 2017, pp. 1–6 (2017). https://doi.org/10.1109/ICC.2017.7996806
Bauer, A., Gilbert, H., Renault, G., Rossi, M.: Assessment of the key-reuse resilience of NewHope. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405, pp. 272–292. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12612-4_14
Qin, Y., Cheng, C., Ding, J.: A complete and optimized key mismatch attack on NIST candidate NewHope. In: Sako, K., Schneider, S., Ryan, P.Y.A. (eds.) ESORICS 2019, Part II. LNCS, vol. 11736, pp. 504–520. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29962-0_24
Avanzi, R., et al.: CRYSTALS-Kyber algorithm specifications and supporting documentation. Version 2.0 (2019)
Fisher, R.A., Yates, F., et al.: Statistical tables for biological, agricultural and medical research (1963). http://hdl.handle.net/2440/10701
Khalid, A., Oder, T., Valencia, F., O’Neill, M., Güneysu, T., Regazzoni, F.: Physical protection of lattice-based cryptography: challenges and solutions. In: Proceedings of the 2018 on Great Lakes Symposium on VLSI, GLSVLSI 2018, Chicago, IL, USA, 23–25 May 2018, pp. 365–370 (2018). https://doi.org/10.1145/3194554.3194616
Acknowledgment
We thank the anonymous reviewers for their accurate reviews and valuable comments. This work was supported by Innosuisse, the federal agency responsible for encouraging science-based innovation in Switzerland.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Appendices
Appendix 1
Appendix 2
Appendix 3
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Amiet, D., Curiger, A., Leuenberger, L., Zbinden, P. (2020). Defeating NewHope with a Single Trace. In: Ding, J., Tillich, JP. (eds) Post-Quantum Cryptography. PQCrypto 2020. Lecture Notes in Computer Science(), vol 12100. Springer, Cham. https://doi.org/10.1007/978-3-030-44223-1_11
Download citation
DOI: https://doi.org/10.1007/978-3-030-44223-1_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-44222-4
Online ISBN: 978-3-030-44223-1
eBook Packages: Computer ScienceComputer Science (R0)