iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-030-41404-7_5
Real-Time Detection and Tracking Using Hybrid DNNs and Space-Aware Color Feature: From Algorithm to System | SpringerLink
Skip to main content

Real-Time Detection and Tracking Using Hybrid DNNs and Space-Aware Color Feature: From Algorithm to System

  • Conference paper
  • First Online:
Pattern Recognition (ACPR 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12046))

Included in the following conference series:

  • 1512 Accesses

Abstract

Object detection and tracking are vital for video analysis. As the development of Deep Neural Network (DNN), multiple object tracking is recently performed on the detection results from DNN. However, DNN-based detection is computation-intensive. In order to accelerate multiple object detection and tracking for real-time application, we present a framework to import the tracking knowledge into detection to allow a less accurate but faster DNN for detection and recover the accuracy loss. By combining different DNNs with accuracy-speed trade-offs using space-aware color information, our framework achieves significant speedup (6.8\(\times \)) and maintains high accuracy. Targeting NVIDIA Xavier, we further optimize the implementation from system and platform level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdelali, H.A., et al.: Fast and robust object tracking via accept-reject color histogram-based method. J. Vis. Commun. Image Represent. 34, 219–229 (2016)

    Article  Google Scholar 

  2. Bernardin, K., Stiefelhagen, R.: Evaluating multiple object tracking performance: the CLEAR MOT metrics. J. Image Video Process. 2008, 1 (2008)

    Article  Google Scholar 

  3. Bewley, A., et al.: Alextrac: affinity learning by exploring temporal reinforcement within association chains. In: ICRA, pp. 2212–2218. IEEE (2016)

    Google Scholar 

  4. Bewley, A., et al.: Simple online and realtime tracking. In: ICIP, pp. 3464–3468. IEEE (2016)

    Google Scholar 

  5. Bochinski, E., et al.: High-speed tracking-by-detection without using image information. In: AVSS, pp. 1–6. IEEE (2017)

    Google Scholar 

  6. Bochinski, E., et al.: Extending IOU based multi-object tracking by visual information. In: AVSS, pp. 1–6. IEEE (2018)

    Google Scholar 

  7. Danelljan, M., et al.: Adaptive color attributes for real-time visual tracking. In: CVPR, pp. 1090–1097 (2014)

    Google Scholar 

  8. Dollár, P., et al.: Fast feature pyramids for object detection. TPAMI 36(8), 1532–1545 (2014)

    Article  Google Scholar 

  9. Hamid Rezatofighi, S., et al.: Joint probabilistic data association revisited. In: ICCV, pp. 3047–3055 (2015)

    Google Scholar 

  10. Han, S., et al.: Learning both weights and connections for efficient neural network. In: Advances in Neural Information Processing Systems, pp. 1135–1143 (2015)

    Google Scholar 

  11. He, K., et al.: Mask R-CNN. In: ICCV, pp. 2961–2969 (2017)

    Google Scholar 

  12. Hubara, I., et al.: Quantized neural networks: training neural networks with low precision weights and activations. J. Mach. Learn. Res. 18(1), 6869–6898 (2017)

    MathSciNet  Google Scholar 

  13. Kim, C., et al.: Multiple hypothesis tracking revisited. In: ICCV, pp. 4696–4704 (2015)

    Google Scholar 

  14. Leal-Taixé, L., et al.: Motchallenge 2015: towards a benchmark for multi-target tracking. arXiv:1504.01942 (2015)

  15. Liu, W., et al.: SSD: single shot MultiBox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  16. Possegger, H., et al.: In defense of color-based model-free tracking. In: CVPR, pp. 2113–2120 (2015)

    Google Scholar 

  17. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv:1804.02767 (2018)

  18. Ren, S., et al.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

    Google Scholar 

  19. Van De Weijer, J., et al.: Learning color names for real-world applications. TIP 18(7), 1512–1523 (2009)

    MathSciNet  MATH  Google Scholar 

  20. Wojke, N., et al.: Simple online and realtime tracking with a deep association metric. In: ICIP, pp. 3645–3649. IEEE (2017)

    Google Scholar 

  21. Womg, A., et al.: Tiny SSD: a tiny single-shot detection deep convolutional neural network for real-time embedded object detection. In: CRV, pp. 95–101. IEEE (2018)

    Google Scholar 

  22. Xiang, Y., et al.: Learning to track: Online multi-object tracking by decision making. In: ICCV, pp. 4705–4713 (2015)

    Google Scholar 

  23. Yang, B., Nevatia, R.: An online learned CRF model for multi-target tracking. In: CVPR, pp. 2034–2041. IEEE (2012)

    Google Scholar 

  24. Yu, F., Li, W., Li, Q., Liu, Y., Shi, X., Yan, J.: POI: multiple object tracking with high performance detection and appearance feature. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9914, pp. 36–42. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48881-3_3

    Chapter  Google Scholar 

  25. Zhang, L., et al.: Global data association for multi-object tracking using network flows. In: CVPR, pp. 1–8. IEEE (2008)

    Google Scholar 

  26. Zhu, G., et al.: MC-HOG correlation tracking with saliency proposal. In: 30th AAAI (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Feng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Feng, L., Igarashi, H., Shibata, S., Kobayashi, Y., Takenaka, T., Zhang, W. (2020). Real-Time Detection and Tracking Using Hybrid DNNs and Space-Aware Color Feature: From Algorithm to System. In: Palaiahnakote, S., Sanniti di Baja, G., Wang, L., Yan, W. (eds) Pattern Recognition. ACPR 2019. Lecture Notes in Computer Science(), vol 12046. Springer, Cham. https://doi.org/10.1007/978-3-030-41404-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41404-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41403-0

  • Online ISBN: 978-3-030-41404-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics