iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-030-39479-0_14
Improved (In-)Approximability Bounds for d-Scattered Set | SpringerLink
Skip to main content

Improved (In-)Approximability Bounds for d-Scattered Set

  • Conference paper
  • First Online:
Approximation and Online Algorithms (WAOA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11926))

Included in the following conference series:

Abstract

In the \(d\)-Scattered Set problem we are asked to select at least k vertices of a given graph, so that the distance between any pair is at least d. We study the problem’s (in-)approximability and offer improvements and extensions of known results for Independent Set, of which the problem is a generalization. Specifically, we show:

  • A lower bound of \(\Delta ^{\lfloor d/2\rfloor -\epsilon }\) on the approximation ratio of any polynomial-time algorithm for graphs of maximum degree \(\Delta \) and an improved upper bound of \(O(\Delta ^{\lfloor d/2\rfloor })\) on the approximation ratio of any greedy scheme for this problem.

  • A polynomial-time \(2\sqrt{n}\)-approximation for bipartite graphs and even values of d, that matches the known lower bound by considering the only remaining case.

  • A lower bound on the complexity of any \(\rho \)-approximation algorithm of (roughly) \(2^{\frac{n^{1-\epsilon }}{\rho d}}\) for even d and \(2^{\frac{n^{1-\epsilon }}{\rho (d+\rho )}}\) for odd d (under the randomized ETH), complemented by \(\rho \)-approximation algorithms of running times that (almost) match these bounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We note that this value of \(\epsilon _2\) is for odd values of d. For d even, the correct value is such that we have the (slightly lower) bound \(\delta ^{1+\epsilon _2}=\delta +3\delta ^{1+2\epsilon _1/d}\), but we write \(\epsilon _2\) for both cases to simplify notation.

References

  1. Alon, N., Feige, U., Wigderson, A., Zuckerman, D.: Derandomized graph products. Comput. Complex. 5(1), 60–75 (1995)

    Article  MathSciNet  Google Scholar 

  2. Berman, P., Karpinski, M.: On some tighter inapproximability results (Extended Abstract). In: Wiedermann, J., van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 200–209. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48523-6_17

    Chapter  Google Scholar 

  3. Bollobás, B., Chung, F.R.K.: The diameter of a cycle plus a random matching. SIAM J. Discret. Math. 1(3), 328–333 (1988)

    Article  MathSciNet  Google Scholar 

  4. Bonnet, E., Lampis, M., Paschos, V.Th.: Time-approximation trade-offs for inapproximable problems. In: STACS, LIPIcs, vol. 47, pp. 22:1–22:14 (2016)

    Google Scholar 

  5. Bourgeois, N., Escoffier, B., Paschos, V.Th.: Approximation of max independent set, min vertex cover and related problems by moderately exponential algorithms. Discret. Appl. Math. 159(17), 1954–1970 (2011)

    Article  MathSciNet  Google Scholar 

  6. Chalermsook, P., Laekhanukit, B., Nanongkai, D.: Independent set, induced matching, and pricing: connections and tight (subexponential time) approximation hardnesses. In: FOCS, vol. 47, pp. 370–379 (2013)

    Google Scholar 

  7. Cygan, M., Kowalik, L., Pilipczuk, M., Wykurz, M.: Exponential-time approximation of hard problems. CoRR, abs/0810.4934 (2008)

    Google Scholar 

  8. Demange, M., Paschos, V.Th.: Improved approximations for maximum independent set via approximation chains. Appl. Math. Lett. 10(3), 105–110 (1997)

    Article  MathSciNet  Google Scholar 

  9. Eto, H., Guo, F., Miyano, E.: Distance- \(d\) independent set problems for bipartite and chordal graphs. J. Comb. Optim. 27(1), 88–99 (2014)

    Article  MathSciNet  Google Scholar 

  10. Eto, H., Ito, T., Liu, Z., Miyano, E.: Approximability of the distance independent set problem on regular graphs and planar graphs. In: Chan, T.-H.H., Li, M., Wang, L. (eds.) COCOA 2016. LNCS, vol. 10043, pp. 270–284. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48749-6_20

    Chapter  MATH  Google Scholar 

  11. Eto, H., Ito, T., Liu, Z., Miyano, E.: Approximation algorithm for the distance-3 independent set problem on cubic graphs. In: Poon, S.-H., Rahman, M.S., Yen, H.-C. (eds.) WALCOM 2017. LNCS, vol. 10167, pp. 228–240. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-53925-6_18

    Chapter  Google Scholar 

  12. Fomin, F.V., Lokshtanov, D., Raman, V., Saurabh, S.: Bidimensionality and EPTAS. In: SODA, pp. 748–759. SIAM (2011)

    Google Scholar 

  13. Halldórsson, M.M., Kratochvil, J., Telle, J.A.: Independent sets with domination constraints. Discret. Appl. Math. 99(1–3), 39–54 (2000)

    Article  MathSciNet  Google Scholar 

  14. Halldórsson, M.M., Radhakrishnan, J.: Greed is good: approximating independent sets in sparse and bounded-degree graphs. Algorithmica 18(1), 145–163 (1997)

    Article  MathSciNet  Google Scholar 

  15. Håstad, J.: Clique is hard to approximate within \(n^{1-\epsilon }\). Acta Mathematica 182, 105–142 (1999)

    Article  MathSciNet  Google Scholar 

  16. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Comput. Syst. Sci. 62(2), 367–375 (2001)

    Article  MathSciNet  Google Scholar 

  17. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001)

    Article  MathSciNet  Google Scholar 

  18. Katsikarelis, I., Lampis, M., Paschos, V.Th.: Structurally parameterized \(d\)-scattered set. In: Brandstädt, A., Köhler, E., Meer, K. (eds.) WG. LNCS, pp. 292–305, vol. 11159. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-030-00256-5_24

    Chapter  Google Scholar 

  19. Marx, D., Pilipczuk, M.: Optimal parameterized algorithms for planar facility location problems using Voronoi diagrams. In: Bansal, N., Finocchi, I. (eds.) ESA 2015. LNCS, vol. 9294, pp. 865–877. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48350-3_72

    Chapter  MATH  Google Scholar 

  20. Montealegre, P., Todinca, I.: On distance-d independent set and other problems in graphs with “few” minimal separators. In: Heggernes, P. (ed.) WG 2016. LNCS, vol. 9941, pp. 183–194. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53536-3_16

    Chapter  MATH  Google Scholar 

  21. Pilipczuk, M., Siebertz, S.: Kernelization and approximation of distance-r independent sets on nowhere dense graphs. CoRR, abs/1809.05675 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis Katsikarelis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Katsikarelis, I., Lampis, M., Paschos, V.T. (2020). Improved (In-)Approximability Bounds for d-Scattered Set. In: Bampis, E., Megow, N. (eds) Approximation and Online Algorithms. WAOA 2019. Lecture Notes in Computer Science(), vol 11926. Springer, Cham. https://doi.org/10.1007/978-3-030-39479-0_14

Download citation

Publish with us

Policies and ethics