Abstract
Markov Chain Monte Carlo (MCMC) methods are a class of algorithms used to perform approximate inference in probabilistic models. When direct sampling from a probability distribution is difficult, MCMC algorithms provide accurate results by constructing a Markov chain that gradually approximates the desired distribution. In this paper we describe and compare the performances of two MCMC sampling algorithms, Gibbs sampling and Metropolis Hastings sampling, with rejection sampling for probabilistic logic programs. In particular, we analyse the relation between execution time and number of samples and how fast each algorithm converges.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)
Christiansen, H., Gallagher, J.P.: Non-discriminating arguments and their uses. In: Hill, P.M., Warren, D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp. 55–69. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02846-5_10
Fung, R.M., Chang, K.C.: Weighing and integrating evidence for stochastic simulation in Bayesian networks. In: 5th Conference Conference on Uncertainty in Artificial Intelligence (UAI 1989), pp. 209–220. North-Holland Publishing Co. (1989)
Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. In: Readings in Computer Vision, pp. 564–584. Elsevier (1987)
Hurd, J.: A formal approach to probabilistic termination. In: Carreño, V.A., Muñoz, C.A., Tahar, S. (eds.) TPHOLs 2002. LNCS, vol. 2410, pp. 230–245. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45685-6_16
Kaminski, B.L., Katoen, J.-P., Matheja, C., Olmedo, F.: Weakest precondition reasoning for expected run–times of probabilistic programs. In: Thiemann, P. (ed.) ESOP 2016. LNCS, vol. 9632, pp. 364–389. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49498-1_15
Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. Adaptive Computation and Machine Learning. MIT Press, Cambridge (2009)
Meert, W., Struyf, J., Blockeel, H.: Learning ground CP-Logic theories by leveraging Bayesian network learning techniques. Fundam. Inform. 89(1), 131–160 (2008)
Nampally, A., Ramakrishnan, C.: Adaptive MCMC-based inference in probabilistic logic programs. arXiv preprint arXiv:1403.6036 (2014)
Fadja, A.N., Riguzzi, F.: Probabilistic logic programming in action. In: Holzinger, A., Goebel, R., Ferri, M., Palade, V. (eds.) Towards Integrative Machine Learning and Knowledge Extraction. LNCS (LNAI), vol. 10344, pp. 89–116. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69775-8_5
Riguzzi, F.: MCINTYRE: a Monte Carlo system for probabilistic logic programming. Fundam. Inform. 124(4), 521–541 (2013)
Riguzzi, F.: The distribution semantics for normal programs with function symbols. Int. J. Approx. Reason. 77, 1–19 (2016)
Riguzzi, F.: Foundations of Probabilistic Logic Programming. River Publishers, Gistrup (2018)
Riguzzi, F., Bellodi, E., Lamma, E., Zese, R., Cota, G.: Probabilistic logic programming on the web. Softw.-Pract. Exper. 46(10), 1381–1396 (2016)
Sato, T.: A statistical learning method for logic programs with distribution semantics. In: Sterling, L. (ed.) ICLP 1995, pp. 715–729. MIT Press, Cambridge (1995)
Vennekens, J., Verbaeten, S., Bruynooghe, M.: Logic programs with annotated disjunctions. In: Demoen, B., Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3132, pp. 431–445. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27775-0_30
Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: SWI-Prolog. Theor. Pract. Log. Prog. 12(1–2), 67–96 (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Azzolini, D., Riguzzi, F., Masotti, F., Lamma, E. (2019). A Comparison of MCMC Sampling for Probabilistic Logic Programming. In: Alviano, M., Greco, G., Scarcello, F. (eds) AI*IA 2019 – Advances in Artificial Intelligence. AI*IA 2019. Lecture Notes in Computer Science(), vol 11946. Springer, Cham. https://doi.org/10.1007/978-3-030-35166-3_2
Download citation
DOI: https://doi.org/10.1007/978-3-030-35166-3_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-35165-6
Online ISBN: 978-3-030-35166-3
eBook Packages: Computer ScienceComputer Science (R0)