iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-030-35166-3_2
A Comparison of MCMC Sampling for Probabilistic Logic Programming | SpringerLink
Skip to main content

A Comparison of MCMC Sampling for Probabilistic Logic Programming

  • Conference paper
  • First Online:
AI*IA 2019 – Advances in Artificial Intelligence (AI*IA 2019)

Abstract

Markov Chain Monte Carlo (MCMC) methods are a class of algorithms used to perform approximate inference in probabilistic models. When direct sampling from a probability distribution is difficult, MCMC algorithms provide accurate results by constructing a Markov chain that gradually approximates the desired distribution. In this paper we describe and compare the performances of two MCMC sampling algorithms, Gibbs sampling and Metropolis Hastings sampling, with rejection sampling for probabilistic logic programs. In particular, we analyse the relation between execution time and number of samples and how fast each algorithm converges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.fe.infn.it/coka/doku.php?id=start.

  2. 2.

    http://cplint.eu/example/inference/arithm.pl.

  3. 3.

    http://cplint.eu/example/inference/hmm.pl.

  4. 4.

    http://cplint.eu/example/inference/lda.swinb.

  5. 5.

    http://cplint.eu/example/inference/uwcse.pl.

References

  1. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)

    MATH  Google Scholar 

  2. Christiansen, H., Gallagher, J.P.: Non-discriminating arguments and their uses. In: Hill, P.M., Warren, D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp. 55–69. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02846-5_10

    Chapter  Google Scholar 

  3. Fung, R.M., Chang, K.C.: Weighing and integrating evidence for stochastic simulation in Bayesian networks. In: 5th Conference Conference on Uncertainty in Artificial Intelligence (UAI 1989), pp. 209–220. North-Holland Publishing Co. (1989)

    Google Scholar 

  4. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. In: Readings in Computer Vision, pp. 564–584. Elsevier (1987)

    Google Scholar 

  5. Hurd, J.: A formal approach to probabilistic termination. In: Carreño, V.A., Muñoz, C.A., Tahar, S. (eds.) TPHOLs 2002. LNCS, vol. 2410, pp. 230–245. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45685-6_16

    Chapter  Google Scholar 

  6. Kaminski, B.L., Katoen, J.-P., Matheja, C., Olmedo, F.: Weakest precondition reasoning for expected run–times of probabilistic programs. In: Thiemann, P. (ed.) ESOP 2016. LNCS, vol. 9632, pp. 364–389. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49498-1_15

    Chapter  Google Scholar 

  7. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. Adaptive Computation and Machine Learning. MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  8. Meert, W., Struyf, J., Blockeel, H.: Learning ground CP-Logic theories by leveraging Bayesian network learning techniques. Fundam. Inform. 89(1), 131–160 (2008)

    MathSciNet  MATH  Google Scholar 

  9. Nampally, A., Ramakrishnan, C.: Adaptive MCMC-based inference in probabilistic logic programs. arXiv preprint arXiv:1403.6036 (2014)

  10. Fadja, A.N., Riguzzi, F.: Probabilistic logic programming in action. In: Holzinger, A., Goebel, R., Ferri, M., Palade, V. (eds.) Towards Integrative Machine Learning and Knowledge Extraction. LNCS (LNAI), vol. 10344, pp. 89–116. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69775-8_5

    Chapter  Google Scholar 

  11. Riguzzi, F.: MCINTYRE: a Monte Carlo system for probabilistic logic programming. Fundam. Inform. 124(4), 521–541 (2013)

    MathSciNet  Google Scholar 

  12. Riguzzi, F.: The distribution semantics for normal programs with function symbols. Int. J. Approx. Reason. 77, 1–19 (2016)

    Article  MathSciNet  Google Scholar 

  13. Riguzzi, F.: Foundations of Probabilistic Logic Programming. River Publishers, Gistrup (2018)

    MATH  Google Scholar 

  14. Riguzzi, F., Bellodi, E., Lamma, E., Zese, R., Cota, G.: Probabilistic logic programming on the web. Softw.-Pract. Exper. 46(10), 1381–1396 (2016)

    Article  Google Scholar 

  15. Sato, T.: A statistical learning method for logic programs with distribution semantics. In: Sterling, L. (ed.) ICLP 1995, pp. 715–729. MIT Press, Cambridge (1995)

    Google Scholar 

  16. Vennekens, J., Verbaeten, S., Bruynooghe, M.: Logic programs with annotated disjunctions. In: Demoen, B., Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3132, pp. 431–445. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27775-0_30

    Chapter  MATH  Google Scholar 

  17. Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: SWI-Prolog. Theor. Pract. Log. Prog. 12(1–2), 67–96 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damiano Azzolini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Azzolini, D., Riguzzi, F., Masotti, F., Lamma, E. (2019). A Comparison of MCMC Sampling for Probabilistic Logic Programming. In: Alviano, M., Greco, G., Scarcello, F. (eds) AI*IA 2019 – Advances in Artificial Intelligence. AI*IA 2019. Lecture Notes in Computer Science(), vol 11946. Springer, Cham. https://doi.org/10.1007/978-3-030-35166-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35166-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35165-6

  • Online ISBN: 978-3-030-35166-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics