iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-030-34029-2_15
Computing Treewidth via Exact and Heuristic Lists of Minimal Separators | SpringerLink
Skip to main content

Computing Treewidth via Exact and Heuristic Lists of Minimal Separators

  • Conference paper
  • First Online:
Analysis of Experimental Algorithms (SEA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11544))

Included in the following conference series:

Abstract

We develop practically efficient algorithms for computing the treewidth \({\mathrm{tw}}(G)\) of a graph G. The core of our approach is a new dynamic programming algorithm which, given a graph G, a positive integer k, and a set \(\varDelta \) of minimal separators of G, decides if G has a tree-decomposition of width at most k of a certain canonical form that uses minimal separators only from \(\varDelta \), in the sense that the intersection of every pair of adjacent bags belongs to \(\varDelta \). This algorithm is used to show a lower bound of \(k + 1\) on \({\mathrm{tw}}(G)\), setting \(\varDelta \) to be the set of all minimal separators of cardinality at most k and to show an upper bound of k on \({\mathrm{tw}}(G)\), setting \(\varDelta \) to be some, hopefully rich, set of such minimal separators. Combining this algorithm with new algorithms for exact and heuristic listing of minimal separators, we obtain exact algorithms for treewidth which overwhelmingly outperform previously implemented algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings in a k-tree. SIAM J. Algebr. Discret. Methods 8, 277–284 (1987)

    Article  MathSciNet  Google Scholar 

  2. Berry, A., Bordat, J.-P., Cogis, O.: Generating all the minimal separators of a graph. Int. J. Found. Comput. Sci. 11(03), 397–403 (2000)

    Article  MathSciNet  Google Scholar 

  3. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)

    Article  MathSciNet  Google Scholar 

  4. Bodlaender, H.L., Fomin, F.V., Koster, A.M.C.A., Kratsch, D., Thilikos, D.M.: On exact algorithms for treewidth. ACM Trans. Algorithms 9(1), 12 (2012)

    Article  MathSciNet  Google Scholar 

  5. Bodlaender, H.L., Koster, A.M.C.A.: Combinatorial optimization on graphs of bounded treewidth. Comput. J. 51(3), 255–269 (2008)

    Article  Google Scholar 

  6. Bouchitté, V., Todinca, I.: Treewidth and minimum fill-in: grouping the minimal separators. SIAM J. Comput. 31(1), 212–232 (2001)

    Article  MathSciNet  Google Scholar 

  7. Fomin, F., Villanger, Y.: Treewidth computation and extremal combinatorics. Combinatorica 32(3), 289–308 (2012)

    Article  MathSciNet  Google Scholar 

  8. Gogate, V., Dechter, R.: A complete anytime algorithm for treewidth. In: Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence. AUAI Press (2004)

    Google Scholar 

  9. Heggernes, P.: Minimal triangulations of graphs: a survey. Discret. Math. 306(3), 297–317 (2006)

    Article  MathSciNet  Google Scholar 

  10. Johnson, D.S., Trick, M.A. (eds.): Cliques, coloring, and satisfiability: second DIMACS implementation challenge. Series in Discrete Mathematics and Theoretical Computer Science, American Mathematical Society, vol. 26. American Mathematical Society (1996)

    Google Scholar 

  11. Kloks, T., Kratsch, D.: Listing all minimal separators of a graph. SIAM J. Comput. 27(3), 605–613 (1998)

    Article  MathSciNet  Google Scholar 

  12. Dell, H., Husfeldt, T., Jansen, B.M.P., Kaski, P., Komusiewicz, C., Rosamond, F.: The first parameterized algorithms and computational experiments challenge. In: Proceedings of the 11th International Symposium on Parameterized and Exact Computation (IPEC 2016), pp. 30:1–30:9 (2017)

    Google Scholar 

  13. Dell, H., Komusiewicz, C., Talmon, N., Weller, M.: The PACE 2017 parameterized algorithms and computational experiments challenge: the second iteration. In: Proceedings of the 12th International Symposium on Parameterized and Exact Computation (IPEC 2017), pp. 30:1–30:12 (2018)

    Google Scholar 

  14. Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width. J. Algorithms 7, 309–322 (1986)

    Article  MathSciNet  Google Scholar 

  15. Robertson, N., Seymour, P.D.: Graph minors. XX Wagner’s conjecture. J. Comb. Theory Series B 92(2), 325–357 (2004)

    Article  MathSciNet  Google Scholar 

  16. Takata, K.: Space-optimal, backtracking algorithms to list the minimal vertex separators of a graph. Discret. Appl. Math. 158(15), 1660–1667 (2010)

    Article  MathSciNet  Google Scholar 

  17. Tamaki, H.: Positive-instance driven dynamic programming for treewidth. J. Comb. Optim., October 2018. https://doi.org/10.1007/s10878-018-0353-z

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

A preliminary part of this work was reported and discussed at NWO-JSPS joint seminar “Computation on Networks with a Tree-Structure: From Theory to Practice”, held in September 2018. The author thanks Hans Bodlaender and Yota Otachi for organizing this seminar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisao Tamaki .

Editor information

Editors and Affiliations

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tamaki, H. (2019). Computing Treewidth via Exact and Heuristic Lists of Minimal Separators. In: Kotsireas, I., Pardalos, P., Parsopoulos, K., Souravlias, D., Tsokas, A. (eds) Analysis of Experimental Algorithms. SEA 2019. Lecture Notes in Computer Science(), vol 11544. Springer, Cham. https://doi.org/10.1007/978-3-030-34029-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34029-2_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34028-5

  • Online ISBN: 978-3-030-34029-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics