Abstract
Previous works on meta-learning either relied on elaborately hand-designed network structures or adopted specialized learning rules to a particular domain. We propose a universal framework to optimize the meta-learning process automatically by adopting neural architecture search technique (NAS). NAS automatically generates and evaluates meta-learner’s architecture for few-shot learning problems, while the meta-learner uses meta-learning algorithm to optimize its parameters based on the distribution of learning tasks. Parameter sharing and experience replay are adopted to accelerate the architectures searching process, so it takes only 1-2 GPU days to find good architectures. Extensive experiments on Mini-ImageNet and Omniglot show that our algorithm excels in few-shot learning tasks. The best architecture found on Mini-ImageNet achieves competitive results when transferred to Omniglot, which shows the high transferability of architectures among different computer vision problems.
X. Zheng and P. Wang—These authors contributed equally to this work
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Andrychowicz, M., et al.: Learning to learn by gradient descent by gradient descent. CoRR abs/1606.04474 (2016). http://arxiv.org/abs/1606.04474
Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. arXiv preprint arXiv:1703.03400 (2017)
Graves, A., Wayne, G., Danihelka, I.: Neural turing machines. CoRR abs/1410.5401 (2014). http://arxiv.org/abs/1410.5401
Hazan, E., Klivans, A., Yuan, Y.: Hyperparameter optimization: a spectral approach. arXiv preprint arXiv:1706.00764 (2017)
Lake, B.M., Salakhutdinov, R., Tenenbaum, J.B.: Human-level concept learning through probabilistic program induction. Science 350(6266), 1332–1338 (2015)
Ravi, S., Larochelle, H.: Optimization as a model for few-shot learning. In: International Conference on Learning Representations (ICLR) (2017)
Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., Talwalkar, A.: Hyperband: a novel bandit-based approach to hyperparameter optimization. arXiv preprint arXiv:1603.06560 (2016)
Long, L., Wang, W., Wen, J., Zhang, M., Lin, Q., Ooi, B.C.: Object-level representation learning for few-shot image classification. CoRR abs/1805.10777 (2018). http://arxiv.org/abs/1805.10777
Loshchilov, I., Hutter, F.: CMA-ES for hyperparameter optimization of deep neural networks. arXiv preprint arXiv:1604.07269 (2016)
Mishra, N., Rohaninejad, M., Chen, X., Abbeel, P.: Meta-learning with temporal convolutions. CoRR abs/1707.03141 (2017). http://arxiv.org/abs/1707.03141
Munkhdalai, T., Yu, H.: Meta networks. CoRR abs/1703.00837 (2017). http://arxiv.org/abs/1703.00837
Nichol, A., Schulman, J.: Reptile: a scalable metalearning algorithm. arXiv preprint arXiv:1803.02999 (2018)
Pham, H., Guan, M.Y., Zoph, B., Le, Q.V., Dean, J.: Efficient neural architecture search via parameter sharing. arXiv preprint arXiv:1802.03268 (2018)
Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for image classifier architecture search. arXiv preprint arXiv:1802.01548 (2018)
Real, E., et al.: Large-scale evolution of image classifiers. arXiv preprint arXiv:1703.01041 (2017)
Santoro, A., Bartunov, S., Botvinick, M.: One-shot learning with memory-augmented neural networks. CoRR (2016). http://arxiv.org/abs/1605.06065
Schaul, T., Quan, J., Antonoglou, I., Silver, D.: Prioritized experience replay. CoRR abs/1511.05952 (2015). http://arxiv.org/abs/1511.05952
Shin, R., Packer, C., Song, D.: Differentiable neural network architecture search (2018)
Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. In: Advances in Neural Information Processing Systems, pp. 2951–2959 (2012)
Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P.H., Hospedales, T.M.: Learning to compare: Relation network for few-shot learning. arXiv preprint arXiv:1711.06025 (2017)
Sutton, R.S.: Policy gradient methods for reinforcement learning with function approximation. In: Advances in Neural Information Processing Systems, vol. 12, pp. 1057–1063 (1999)
Vinyals, O., Blundell, C., Lillicrap, T.P.: Matching networks for one shot learning. CoRR abs/1606.04080 (2016). http://arxiv.org/abs/1606.04080
Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. arXiv preprint arXiv:1611.01578 (2016)
Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures for scalable image recognition. arXiv preprint arXiv:1707.07012 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Zheng, X., Wang, P., Wang, Q., Shi, Z., Xu, F. (2019). Efficient Automatic Meta Optimization Search for Few-Shot Learning. In: Lin, Z., et al. Pattern Recognition and Computer Vision. PRCV 2019. Lecture Notes in Computer Science(), vol 11859. Springer, Cham. https://doi.org/10.1007/978-3-030-31726-3_19
Download citation
DOI: https://doi.org/10.1007/978-3-030-31726-3_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-31725-6
Online ISBN: 978-3-030-31726-3
eBook Packages: Computer ScienceComputer Science (R0)