Abstract
Education worldwide is a significant aspect for the development of the peoples and much more in developing countries such as those in Latin America, where less than 22% of its inhabitants have higher education. Research in this field is a matter of interest for each of the governments to improve education policies. Therefore, the analysis of data on the behavior of a student in an educational institution is of utmost importance, because multiple aspects of progress or student dropout rates during their professional training period can be identified. The most important variables to identify the student’s behavior are the socio-economic ones, since the psychological state and the economic deficiencies that the student faces while is studying can be detected. This data provides grades, scholarships, attendance and information on student progress. During the first phase of the study, all the information is analyzed and it is determined which provides relevant data to develop a profile of a student behavior, as well as the pre-processing of the data obtained. In this phase, voracious algorithms are applied for the selection of attributes, such as greedy stepwise, Chi-squared test, Anova, RefiefF, Gain Radio, among others. In this work, we apply the artificial intelligence techniques, the results obtained are compared to generate a normal and unusual behavior of each student according to their professional career. In addition, the most optimal model that has had a higher accuracy percentage, false positive rate, false negative rate and mean squared error in the tests results are determined.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Gašević, D., Dawson, S., Siemens, G.: Let’s not forget: learning analytics are about learning. TechTrends 59(1), 64–71 (2015)
Bakharia, A., et al.: A conceptual framework linking learning design with learning analytics. In: Proceedings of the Sixth International Conference on Learning Analytics and Knowledge – LAK 2016, pp. 329–338 (2016)
Fidalgo-Blanco, Á., Sein-Echaluce, M.L., García-Peñalvo, F.J., Conde, M.Á.: Using learning analytics to improve teamwork assessment. Comput. Hum. Behav. 47, 149–156 (2015)
Azhagusundari, B., Thanamani, A.S.: Feature selection based on information gain. Int. J. Innov. Technol. Explor. Eng. 2(2), 18 (2013)
Jovic, A., Brkic, K., Bogunovic, N.: A review of feature selection methods with applications. In: 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 1200–1205 (2015)
Thaseen, I.S., Kumar, C.A.: Intrusion detection model using fusion of Chi-square feature selection and multi class SVM. J. King Saud Univ. – Comput. Inf. Sci. 29(4), 462–472 (2017)
Zhou, H., Deng, Z., Xia, Y., Fu, M.: A new sampling method in particle filter based on Pearson correlation coefficient. Neurocomputing 216, 208–215 (2016)
Montavon, G., Lapuschkin, S., Binder, A., Samek, W., Müller, K.-R.: Explaining nonlinear classification decisions with deep Taylor decomposition. Pattern Recogn. 65, 211–222 (2017)
Ashfaq, R.A.R., Wang, X.-Z., Huang, J.Z., Abbas, H., He, Y.-L.: Fuzziness based semi-supervised learning approach for intrusion detection system. Inf. Sci. (NY) 378, 484–497 (2017)
Maggiori, E., Tarabalka, Y., Charpiat, G., Alliez, P.: Convolutional neural networks for large-scale remote-sensing image classification. IEEE Trans. Geosci. Remote Sens. 55(2), 645–657 (2017)
Ngoc, P.V., Ngoc, C.V.T., Ngoc, T.V.T., Duy, D.N.: A C4.5 algorithm for English emotional classification. Evol. Syst., 1–27 (2017)
Mantas, C.J., Abellán, J., Castellano, J.G.: Analysis of Credal-C4.5 for classification in noisy domains. Expert Syst. Appl. 61, 314–326 (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Guevara, C. et al. (2020). Detection of Student Behavior Profiles Applying Neural Networks and Decision Trees. In: Ahram, T., Karwowski, W., Pickl, S., Taiar, R. (eds) Human Systems Engineering and Design II. IHSED 2019. Advances in Intelligent Systems and Computing, vol 1026. Springer, Cham. https://doi.org/10.1007/978-3-030-27928-8_90
Download citation
DOI: https://doi.org/10.1007/978-3-030-27928-8_90
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-27927-1
Online ISBN: 978-3-030-27928-8
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)