iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-030-26807-7_3
Real-Time Equivalence of Chemical Reaction Networks and Analog Computers | SpringerLink
Skip to main content

Real-Time Equivalence of Chemical Reaction Networks and Analog Computers

  • Conference paper
  • First Online:
DNA Computing and Molecular Programming (DNA 2019)

Abstract

This paper investigates the class \( \mathbb {R}_{RTCRN}\) of real numbers that are computable in real time by chemical reaction networks (Huang, Klinge, Lathrop, Li, Lutz, 2019), and its relationship to general purpose analog computers. Roughly, \( \alpha \in \mathbb {R}_{RTCRN}\) if there is a chemical reaction network (CRN) with integral rate constants and a designated species \( X \) such that, when all species concentrations are initialized to zero, \( X \) converges to \( \alpha \) exponentially quickly. In this paper, we define a similar class \( \mathbb {R}_{RTGPAC}\) of real numbers that are computable in real time by general purpose analog computers, and show that \( \mathbb {R}_{RTGPAC}= \mathbb {R}_{RTCRN}\) using a construction similar to that of the difference representation introduced by Fages, Le Guludec, Bournez, and Pouly. We prove this equivalence by showing that \( \mathbb {R}_{RTCRN}\) is a subfield of \( \mathbb {R}\) which solves a previously open problem. We also prove that a CRN with integer initial concentrations can be simulated by a CRN with all zero initial concentrations. Using these results, we give simple and natural constructions showing \( e \) and \( \pi \) are members of \( \mathbb {R}_{RTCRN}\), which was not previously known.

This research was supported in part by National Science Foundation Grant 1545028.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The stochastic mass action model was proven to be “equivalent in the limit” to the deterministic mass action model as the number of molecules and the volume are scaled to infinity [20].

References

  1. Angluin, D., Aspnes, J., Eisenstat, D., Ruppert, E.: The computational power of population protocols. Distrib. Comput. 20(4), 279–304 (2007)

    Article  Google Scholar 

  2. Badelt, S., Shin, S.W., Johnson, R.F., Dong, Q., Thachuk, C., Winfree, E.: A general-purpose CRN-to-DSD compiler with formal verification, optimization, and simulation capabilities. In: Brijder, R., Qian, L. (eds.) DNA 2017. LNCS, vol. 10467, pp. 232–248. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66799-7_15

    Chapter  MATH  Google Scholar 

  3. Bournez, O., Fraigniaud, P., Koegler, X.: Computing with large populations using interactions. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 234–246. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32589-2_23

    Chapter  Google Scholar 

  4. Bournez, O., Graça, D.S., Pouly, A.: Polynomial time corresponds to solutions of polynomial ordinary differential equations of polynomial length. J. ACM 64(6), 38 (2017)

    Article  MathSciNet  Google Scholar 

  5. Case, A., Lutz, J.H., Stull, D.M.: Reachability problems for continuous chemical reaction networks. In: Amos, M., Condon, A. (eds.) UCNC 2016. LNCS, vol. 9726, pp. 1–10. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41312-9_1

    Chapter  Google Scholar 

  6. Chalk, C., Kornerup, N., Reeves, W., Soloveichik, D.: Composable rate-independent computation in continuous chemical reaction networks. In: Češka, M., Šafránek, D. (eds.) CMSB 2018. LNCS, vol. 11095, pp. 256–273. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99429-1_15

    Chapter  MATH  Google Scholar 

  7. Chen, H.L., Cummings, R., Doty, D., Soloveichik, D.: Speed faults in computation by chemical reaction networks. Distrib. Comput. 30(5), 373–390 (2017)

    Article  MathSciNet  Google Scholar 

  8. Chen, H.-L., Doty, D., Soloveichik, D.: Deterministic function computation with chemical reaction networks. In: Stefanovic, D., Turberfield, A. (eds.) DNA 2012. LNCS, vol. 7433, pp. 25–42. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32208-2_3

    Chapter  Google Scholar 

  9. Chen, H.L., Doty, D., Soloveichik, D.: Rate-independent computation in continuous chemical reaction networks. In: Proceedings of the 5th Conference on Innovations in Theoretical Computer Science, pp. 313–326. ACM (2014)

    Google Scholar 

  10. Cook, M., Soloveichik, D., Winfree, E., Bruck, J.: Programmability of chemical reaction networks. In: Condon, A., Harel, D., Kok, J.N., Salomaa, A., Winfree, E. (eds.) Algorithmic Bioprocesses. Natural Computing Series, pp. 543–584. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-88869-7_27

    Chapter  Google Scholar 

  11. Doty, D.: Timing in chemical reaction networks. In: Proceedings of the 25th Symposium on Discrete Algorithms, pp. 772–784 (2014)

    Google Scholar 

  12. Epstein, I.R., Pojman, J.A.: An Introduction to Nonlinear Chemical Dynamics: Oscillations, Waves, Patterns, and Chaos. Oxford University Press, Oxford (1998)

    Google Scholar 

  13. Fages, F., Le Guludec, G., Bournez, O., Pouly, A.: Strong turing completeness of continuous chemical reaction networks and compilation of mixed analog-digital programs. In: Feret, J., Koeppl, H. (eds.) CMSB 2017. LNCS, vol. 10545, pp. 108–127. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67471-1_7

    Chapter  Google Scholar 

  14. Feinberg, M.: Foundations of Chemical Reaction Network Theory. AMS, vol. 202. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-03858-8

    Book  MATH  Google Scholar 

  15. Fischer, P.C., Meyer, A.R., Rosenberg, A.L.: Time-restricted sequence generation. J. Comput. Syst. Sci. 4(1), 50–73 (1970)

    Article  MathSciNet  Google Scholar 

  16. Graça, D.S.: Some recent developments on shannon’s general purpose analog computer. Math. Logic Q.: Math. Logic Q. 50(4–5), 473–485 (2004)

    Article  MathSciNet  Google Scholar 

  17. Graça, D.S., Costa, J.F.: Analog computers and recursive functions over the reals. J. Complex. 19(5), 644–664 (2003)

    Article  MathSciNet  Google Scholar 

  18. Hartmanis, J., Stearns, R.E.: On the computational complexity of algorithms. Trans. Am. Math. Soc. 117, 285–306 (1965)

    Article  MathSciNet  Google Scholar 

  19. Huang, X., Klinge, T.H., Lathrop, J.I., Li, X., Lutz, J.H.: Real-time computability of real numbers by chemical reaction networks. Nat. Comput. 18(1), 63–73 (2019)

    Article  MathSciNet  Google Scholar 

  20. Kurtz, T.G.: The relationship between stochastic and deterministic models for chemical reactions. J. Chem. Phys. 57(7), 2976–2978 (1972)

    Article  Google Scholar 

  21. Shannon, C.E.: Mathematical theory of the differential analyzer. Stud. Appl. Math. 20(1–4), 337–354 (1941)

    MathSciNet  MATH  Google Scholar 

  22. Yamada, H.: Real-time computation and recursive functions not real-time computable. IRE Trans. Electron. Comput. EC–11(6), 753–760 (1962)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We thank Jack Lutz for helpful comments and suggestions. We also thank the anonymous reviews for their input, and especially insightful comments concerning the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James I. Lathrop .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, X., Klinge, T.H., Lathrop, J.I. (2019). Real-Time Equivalence of Chemical Reaction Networks and Analog Computers. In: Thachuk, C., Liu, Y. (eds) DNA Computing and Molecular Programming. DNA 2019. Lecture Notes in Computer Science(), vol 11648. Springer, Cham. https://doi.org/10.1007/978-3-030-26807-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26807-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26806-0

  • Online ISBN: 978-3-030-26807-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics