iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-030-24302-9_51
Investigating Urban Growth Dynamic – Land Surface Temperature Relationship | SpringerLink
Skip to main content

Investigating Urban Growth Dynamic – Land Surface Temperature Relationship

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2019 (ICCSA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11621))

Included in the following conference series:

  • 1433 Accesses

Abstract

According to the United Nations, 68% of the world’s population is expected to live in urban areas by 2050. This makes urban growth one of the cornerstones of sustainable development policies that must be implemented from the outset. Well-managed urbanization is essential to minimize environmental degradation and land use, while maximizing the benefits of agglomeration and ensuring the expected well-being of all city dwellers. On the other hand, it is equally important that these growth dynamics interface systematically with ongoing climate change and its expected effects on the urban environment. Local climate regulation is a crucial urban ecosystem service as it directly affects the quality of urban life. Although its link with soil sealing and land-use change is theoretically known, it is worth explaining this relationship in terms of significant parameters of both altered surfaces and type of urban expansion.

This paper simultaneously analyzes the artificial soils dynamics transformation and land surface temperatures (LST) time series derived by MODIS satellites in a study area, the Basilicata region, widely affected by urban sprinkling and a marked depopulation.

Our results show a strong relationship between the increase in recorded minimum temperatures and the expansion of urban areas, especially where the main growth dynamic is compaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. United Nations: World Urbanization Prospects - Population Division - United Nations. https://population.un.org/wup/Publications/

  2. Kabisch, N., et al.: Nature-based solutions to climate change mitigation and adaptation in urban areas: perspectives on indicators, knowledge gaps, barriers, and opportunities for action. Ecol. Soc. 21, art39 (2016). https://doi.org/10.5751/ES-08373-210239

  3. Bolund, P., Hunhammar, S.: Ecosystem services in urban areas (1999)

    Article  Google Scholar 

  4. Romano, B., Zullo, F., Fiorini, L., Ciabò, S., Marucci, A.: Sprinkling: an approach to describe urbanization dynamics in Italy. https://doi.org/10.3390/su9010097

    Article  Google Scholar 

  5. Romano, B., Zullo, F., Fiorini, L., Marucci, A., Ciabò, S.: Land transformation of Italy due to half a century of urbanization. Land Use Policy 67, 387–400 (2017). https://doi.org/10.1016/J.LANDUSEPOL.2017.06.006

    Article  Google Scholar 

  6. Fiorini, L., Marucci, A., Zullo, F., Romano, B.: Indicator engineering for land take control and settlement sustainability. WIT Trans. Ecol. Environ. 217, 437–446 (2018). https://doi.org/10.2495/SDP180391

    Article  Google Scholar 

  7. Haase, D., Schwarz, N., Strohbach, M., Kroll, F., Seppelt, R.: Synergies, trade-offs, and losses of ecosystem services in urban regions: an integrated multiscale framework applied to the Leipzig-Halle Region, Germany. Ecol. Soc. 17, art22 (2012). https://doi.org/10.5751/ES-04853-170322

  8. Hu, Y., Zhang, Y., Ke, X., Hu, Y., Zhang, Y., Ke, X.: Dynamics of tradeoffs between economic benefits and ecosystem services due to urban expansion. Sustainability 10, 2306 (2018). https://doi.org/10.3390/su10072306

    Article  Google Scholar 

  9. Tratalos, J., Fuller, R.A., Warren, P.H., Davies, R.G., Gaston, K.J.: Urban form, biodiversity potential and ecosystem services. Landsc. Urban Plan. 83, 308–317 (2007). https://doi.org/10.1016/j.landurbplan.2007.05.003

    Article  Google Scholar 

  10. Grafius, D.R., Corstanje, R., Harris, J.A.: Linking ecosystem services, urban form and green space configuration using multivariate landscape metric analysis. Landsc. Ecol. 33, 557–573 (2018). https://doi.org/10.1007/s10980-018-0618-z

    Article  Google Scholar 

  11. Burkhard, B., Kroll, F., Müller, F.: Landscapes’ capacities to provide ecosystem services – a concept for land-cover based assessments. Landsc. Online 15, 1–22 (2010). https://doi.org/10.3097/LO.200915

    Article  Google Scholar 

  12. Sharma, R., et al.: Modeling land use and land cover changes and their effects on biodiversity in Central Kalimantan, Indonesia. Land 7, 57 (2018). https://doi.org/10.3390/land7020057

    Article  Google Scholar 

  13. Zhou, J., et al.: Effects of the land use change on ecosystem service value. Glob. J. Environ. Sci. Manag. 3, 121–130 (2017). https://doi.org/10.22034/GJESM.2017.03.02.001

    Article  Google Scholar 

  14. Polasky, S., Nelson, E., Pennington, D., Johnson, K.A.: The impact of land-use change on ecosystem services, biodiversity and returns to landowners: a case study in the State of Minnesota. Environ. Resour. Econ. 48, 219–242 (2011). https://doi.org/10.1007/s10640-010-9407-0

    Article  Google Scholar 

  15. Wu, J.: Landscape sustainability science: ecosystem services and human well-being in changing landscapes. Landsc. Ecol. 28, 999–1023 (2013). https://doi.org/10.1007/s10980-013-9894-9

    Article  Google Scholar 

  16. Alcamo, J., Bennett, E.M.: Millennium Ecosystem Assessment (Program): Ecosystems and Human Well-Being: A Framework for Assessment. Island Press, Washington, D.C. (2003)

    Google Scholar 

  17. Lafortezza, R., Carrus, G., Sanesi, G., Davies, C.: Benefits and well-being perceived by people visiting green spaces in periods of heat stress. Urban For. Urban Green. 8, 97–108 (2009). https://doi.org/10.1016/j.ufug.2009.02.003

    Article  Google Scholar 

  18. Grimm, N.B., et al.: Global change and the ecology of cities. Science 319, 756–760 (2008). https://doi.org/10.1126/science.1150195

    Article  Google Scholar 

  19. Čeplová, N., Kalusová, V., Lososová, Z.: Effects of settlement size, urban heat island and habitat type on urban plant biodiversity. Landsc. Urban Plan. 159, 15–22 (2017). https://doi.org/10.1016/j.landurbplan.2016.11.004

    Article  Google Scholar 

  20. Kaiser, A., Merckx, T., Van Dyck, H.: The Urban Heat Island and its spatial scale dependent impact on survival and development in butterflies of different thermal sensitivity. Ecol. Evol. 6, 4129–4140 (2016). https://doi.org/10.1002/ece3.2166

    Article  Google Scholar 

  21. Hou, Y., Müller, F., Li, B., Kroll, F.: Urban-rural gradients of ecosystem services and the linkages with socioeconomics. Landsc. Online 39, 1–31 (2015). https://doi.org/10.3097/LO.201539

    Article  Google Scholar 

  22. Haines-Young, R., Potschin, M.: The links between biodiversity, ecosystem services and human well-being. In: Raffaelli, D.G., Frid, C.L.J. (eds.) Ecosystem Ecology, pp. 110–139. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511750458.007

  23. Saganeiti, L., Favale, A., Pilogallo, A., Scorza, F., Murgante, B.: Assessing urban fragmentation at regional scale using sprinkling indexes. Sustainability 10, 3274 (2018). https://doi.org/10.3390/su10093274

    Article  Google Scholar 

  24. Saganeiti, L., Pilogallo, A., Scorza, F., Mussuto, G., Murgante, B.: Spatial indicators to evaluate urban fragmentation in Basilicata Region. In: Gervasi, O., et al. (eds.) ICCSA 2018. LNCS, vol. 10964, pp. 100–112. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95174-4_8

    Chapter  Google Scholar 

  25. Istat. http://dati.istat.it/

  26. Fiorini, L., Zullo, F., Marucci, A., Romano, B.: Land take and landscape loss: effect of uncontrolled urbanization in Southern Italy. J. Urban Manag. 8, 42–56 (2019). https://doi.org/10.1016/J.JUM.2018.09.003

    Article  Google Scholar 

  27. Larondelle, N., Haase, D., Kabisch, N.: Mapping the diversity of regulating ecosystem services in European Cities. Glob. Environ. Chang. 26, 119–129 (2014)

    Article  Google Scholar 

  28. Martellozzo, F., Amato, F., Murgante, B., Clarke, K.C.: Modelling the impact of urban growth on agriculture and natural land in Italy to 2030. Appl. Geogr. 91, 156–167 (2018). https://doi.org/10.1016/j.apgeog.2017.12.004

    Article  Google Scholar 

  29. Amato, F., Maimone, B.A., Martellozzo, F., Nolè, G., Murgante, B.: The effects of urban policies on the development of urban areas. Sustainability 8, 297 (2016). https://doi.org/10.3390/su8040297

    Article  Google Scholar 

  30. Amato, F., Martellozzo, F., Nolè, G., Murgante, B.: Preserving cultural heritage by supporting landscape planning with quantitative predictions of soil consumption. J. Cult. Herit. 23, 44–54 (2017). https://doi.org/10.1016/j.culher.2015.12.009

    Article  Google Scholar 

  31. Gomes, E.: Assessing the effect of spatial proximity on urban growth. Sustainability (2018). https://doi.org/10.3390/su10051308

    Article  Google Scholar 

  32. Dupras, J., et al.: Environmental science and policy the impacts of urban sprawl on ecological connectivity in the Montreal Metropolitan Region. Environ. Sci. Policy 58, 61–73 (2016). https://doi.org/10.1016/j.envsci.2016.01.005

    Article  Google Scholar 

  33. RSDI – Geoportale Basilicata. https://rsdi.regione.basilicata.it/

  34. Vaz, E., Nijkamp, P.: Gravitational forces in the spatial impacts of urban sprawl: an investigation of the region of Veneto, Italy. Habitat Int. 45, 99–105 (2015). https://doi.org/10.1016/j.habitatint.2014.06.024

    Article  Google Scholar 

  35. Hengl, T., Heuvelink, G.B.M., Perčec Tadić, M., Pebesma, E.J.: Spatio-temporal prediction of daily temperatures using time-series of MODIS LST images. Theor. Appl. Climatol. 107, 265–277 (2012). https://doi.org/10.1007/s00704-011-0464-2

    Article  Google Scholar 

  36. Wan, Z., Hook, S., Hulley, G.: MOD11A2 MODIS/Terra Land Surface Temperature/Emissivity 8-Day L3 Global 1 km SIN Grid V006 [Data set] (2015). https://doi.org/10.5067/MODIS/MOD11A2.006

  37. Wan, Z., Hook, S., Hulley, G.: MYD11A2 MODIS/Aqua Land Surface Temperature/Emissivity 8-Day L3 Global 1 km SIN Grid V006 [Data set] (2015). https://doi.org/10.5067/MODIS/MYD11A2.006

  38. Busetto, L., Ranghetti, L.: MODIStsp: an R package for automatic preprocessing of MODIS land products time series. Comput. Geosci. 97, 40–48 (2016). https://doi.org/10.1016/J.CAGEO.2016.08.020

    Article  Google Scholar 

  39. Arnfield, A.J.: Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat Island. Int. J. Climatol. 23, 1–26 (2003). https://doi.org/10.1002/joc.859

    Article  Google Scholar 

  40. Mazzariello, A., Pilogallo, A., Scorza, F., Murgante, B., Las Casas, G.: Carbon stock as an indicator for the estimation of anthropic pressure on territorial components. In: Gervasi, O., et al. (eds.) ICCSA 2018. LNCS, vol. 10964, pp. 697–711. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95174-4_53

    Chapter  Google Scholar 

  41. Scorza, F., Pilogallo, A., Las Casas, G.: Investigating tourism attractiveness in inland areas: ecosystem services, open data and smart specializations. In: Calabrò, F., Della Spina, L., Bevilacqua, C. (eds.) ISHT 2018. SIST, vol. 100, pp. 30–38. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-92099-3_4

    Chapter  Google Scholar 

  42. Pilogallo, A., Saganeiti, L., Scorza, F., Las Casas, G.: Tourism attractiveness: main components for a spacial appraisal of major destinations according with ecosystem services approach. In: Gervasi, O., et al. (eds.) ICCSA 2018. LNCS, vol. 10964, pp. 712–724. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95174-4_54

    Chapter  Google Scholar 

  43. Scorza, F.: Towards self energy-management and sustainable citizens’ engagement in local energy efficiency agenda. Int. J. Agric. Environ. Inf. Syst. 7, 44–53 (2016). https://doi.org/10.4018/IJAEIS.2016010103

    Article  Google Scholar 

Download references

Acknowledgements

This research has been developed within the MEVCSU and INDICARE projects supported by the Environmental Observatory Foundation of Basilicata Region (FARBAS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Pilogallo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pilogallo, A., Saganeiti, L., Scorza, F., Murgante, B. (2019). Investigating Urban Growth Dynamic – Land Surface Temperature Relationship. In: Misra, S., et al. Computational Science and Its Applications – ICCSA 2019. ICCSA 2019. Lecture Notes in Computer Science(), vol 11621. Springer, Cham. https://doi.org/10.1007/978-3-030-24302-9_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24302-9_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24301-2

  • Online ISBN: 978-3-030-24302-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics