Abstract
According to the United Nations, 68% of the world’s population is expected to live in urban areas by 2050. This makes urban growth one of the cornerstones of sustainable development policies that must be implemented from the outset. Well-managed urbanization is essential to minimize environmental degradation and land use, while maximizing the benefits of agglomeration and ensuring the expected well-being of all city dwellers. On the other hand, it is equally important that these growth dynamics interface systematically with ongoing climate change and its expected effects on the urban environment. Local climate regulation is a crucial urban ecosystem service as it directly affects the quality of urban life. Although its link with soil sealing and land-use change is theoretically known, it is worth explaining this relationship in terms of significant parameters of both altered surfaces and type of urban expansion.
This paper simultaneously analyzes the artificial soils dynamics transformation and land surface temperatures (LST) time series derived by MODIS satellites in a study area, the Basilicata region, widely affected by urban sprinkling and a marked depopulation.
Our results show a strong relationship between the increase in recorded minimum temperatures and the expansion of urban areas, especially where the main growth dynamic is compaction.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
United Nations: World Urbanization Prospects - Population Division - United Nations. https://population.un.org/wup/Publications/
Kabisch, N., et al.: Nature-based solutions to climate change mitigation and adaptation in urban areas: perspectives on indicators, knowledge gaps, barriers, and opportunities for action. Ecol. Soc. 21, art39 (2016). https://doi.org/10.5751/ES-08373-210239
Bolund, P., Hunhammar, S.: Ecosystem services in urban areas (1999)
Romano, B., Zullo, F., Fiorini, L., Ciabò, S., Marucci, A.: Sprinkling: an approach to describe urbanization dynamics in Italy. https://doi.org/10.3390/su9010097
Romano, B., Zullo, F., Fiorini, L., Marucci, A., Ciabò, S.: Land transformation of Italy due to half a century of urbanization. Land Use Policy 67, 387–400 (2017). https://doi.org/10.1016/J.LANDUSEPOL.2017.06.006
Fiorini, L., Marucci, A., Zullo, F., Romano, B.: Indicator engineering for land take control and settlement sustainability. WIT Trans. Ecol. Environ. 217, 437–446 (2018). https://doi.org/10.2495/SDP180391
Haase, D., Schwarz, N., Strohbach, M., Kroll, F., Seppelt, R.: Synergies, trade-offs, and losses of ecosystem services in urban regions: an integrated multiscale framework applied to the Leipzig-Halle Region, Germany. Ecol. Soc. 17, art22 (2012). https://doi.org/10.5751/ES-04853-170322
Hu, Y., Zhang, Y., Ke, X., Hu, Y., Zhang, Y., Ke, X.: Dynamics of tradeoffs between economic benefits and ecosystem services due to urban expansion. Sustainability 10, 2306 (2018). https://doi.org/10.3390/su10072306
Tratalos, J., Fuller, R.A., Warren, P.H., Davies, R.G., Gaston, K.J.: Urban form, biodiversity potential and ecosystem services. Landsc. Urban Plan. 83, 308–317 (2007). https://doi.org/10.1016/j.landurbplan.2007.05.003
Grafius, D.R., Corstanje, R., Harris, J.A.: Linking ecosystem services, urban form and green space configuration using multivariate landscape metric analysis. Landsc. Ecol. 33, 557–573 (2018). https://doi.org/10.1007/s10980-018-0618-z
Burkhard, B., Kroll, F., Müller, F.: Landscapes’ capacities to provide ecosystem services – a concept for land-cover based assessments. Landsc. Online 15, 1–22 (2010). https://doi.org/10.3097/LO.200915
Sharma, R., et al.: Modeling land use and land cover changes and their effects on biodiversity in Central Kalimantan, Indonesia. Land 7, 57 (2018). https://doi.org/10.3390/land7020057
Zhou, J., et al.: Effects of the land use change on ecosystem service value. Glob. J. Environ. Sci. Manag. 3, 121–130 (2017). https://doi.org/10.22034/GJESM.2017.03.02.001
Polasky, S., Nelson, E., Pennington, D., Johnson, K.A.: The impact of land-use change on ecosystem services, biodiversity and returns to landowners: a case study in the State of Minnesota. Environ. Resour. Econ. 48, 219–242 (2011). https://doi.org/10.1007/s10640-010-9407-0
Wu, J.: Landscape sustainability science: ecosystem services and human well-being in changing landscapes. Landsc. Ecol. 28, 999–1023 (2013). https://doi.org/10.1007/s10980-013-9894-9
Alcamo, J., Bennett, E.M.: Millennium Ecosystem Assessment (Program): Ecosystems and Human Well-Being: A Framework for Assessment. Island Press, Washington, D.C. (2003)
Lafortezza, R., Carrus, G., Sanesi, G., Davies, C.: Benefits and well-being perceived by people visiting green spaces in periods of heat stress. Urban For. Urban Green. 8, 97–108 (2009). https://doi.org/10.1016/j.ufug.2009.02.003
Grimm, N.B., et al.: Global change and the ecology of cities. Science 319, 756–760 (2008). https://doi.org/10.1126/science.1150195
Čeplová, N., Kalusová, V., Lososová, Z.: Effects of settlement size, urban heat island and habitat type on urban plant biodiversity. Landsc. Urban Plan. 159, 15–22 (2017). https://doi.org/10.1016/j.landurbplan.2016.11.004
Kaiser, A., Merckx, T., Van Dyck, H.: The Urban Heat Island and its spatial scale dependent impact on survival and development in butterflies of different thermal sensitivity. Ecol. Evol. 6, 4129–4140 (2016). https://doi.org/10.1002/ece3.2166
Hou, Y., Müller, F., Li, B., Kroll, F.: Urban-rural gradients of ecosystem services and the linkages with socioeconomics. Landsc. Online 39, 1–31 (2015). https://doi.org/10.3097/LO.201539
Haines-Young, R., Potschin, M.: The links between biodiversity, ecosystem services and human well-being. In: Raffaelli, D.G., Frid, C.L.J. (eds.) Ecosystem Ecology, pp. 110–139. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511750458.007
Saganeiti, L., Favale, A., Pilogallo, A., Scorza, F., Murgante, B.: Assessing urban fragmentation at regional scale using sprinkling indexes. Sustainability 10, 3274 (2018). https://doi.org/10.3390/su10093274
Saganeiti, L., Pilogallo, A., Scorza, F., Mussuto, G., Murgante, B.: Spatial indicators to evaluate urban fragmentation in Basilicata Region. In: Gervasi, O., et al. (eds.) ICCSA 2018. LNCS, vol. 10964, pp. 100–112. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95174-4_8
Istat. http://dati.istat.it/
Fiorini, L., Zullo, F., Marucci, A., Romano, B.: Land take and landscape loss: effect of uncontrolled urbanization in Southern Italy. J. Urban Manag. 8, 42–56 (2019). https://doi.org/10.1016/J.JUM.2018.09.003
Larondelle, N., Haase, D., Kabisch, N.: Mapping the diversity of regulating ecosystem services in European Cities. Glob. Environ. Chang. 26, 119–129 (2014)
Martellozzo, F., Amato, F., Murgante, B., Clarke, K.C.: Modelling the impact of urban growth on agriculture and natural land in Italy to 2030. Appl. Geogr. 91, 156–167 (2018). https://doi.org/10.1016/j.apgeog.2017.12.004
Amato, F., Maimone, B.A., Martellozzo, F., Nolè, G., Murgante, B.: The effects of urban policies on the development of urban areas. Sustainability 8, 297 (2016). https://doi.org/10.3390/su8040297
Amato, F., Martellozzo, F., Nolè, G., Murgante, B.: Preserving cultural heritage by supporting landscape planning with quantitative predictions of soil consumption. J. Cult. Herit. 23, 44–54 (2017). https://doi.org/10.1016/j.culher.2015.12.009
Gomes, E.: Assessing the effect of spatial proximity on urban growth. Sustainability (2018). https://doi.org/10.3390/su10051308
Dupras, J., et al.: Environmental science and policy the impacts of urban sprawl on ecological connectivity in the Montreal Metropolitan Region. Environ. Sci. Policy 58, 61–73 (2016). https://doi.org/10.1016/j.envsci.2016.01.005
RSDI – Geoportale Basilicata. https://rsdi.regione.basilicata.it/
Vaz, E., Nijkamp, P.: Gravitational forces in the spatial impacts of urban sprawl: an investigation of the region of Veneto, Italy. Habitat Int. 45, 99–105 (2015). https://doi.org/10.1016/j.habitatint.2014.06.024
Hengl, T., Heuvelink, G.B.M., Perčec Tadić, M., Pebesma, E.J.: Spatio-temporal prediction of daily temperatures using time-series of MODIS LST images. Theor. Appl. Climatol. 107, 265–277 (2012). https://doi.org/10.1007/s00704-011-0464-2
Wan, Z., Hook, S., Hulley, G.: MOD11A2 MODIS/Terra Land Surface Temperature/Emissivity 8-Day L3 Global 1 km SIN Grid V006 [Data set] (2015). https://doi.org/10.5067/MODIS/MOD11A2.006
Wan, Z., Hook, S., Hulley, G.: MYD11A2 MODIS/Aqua Land Surface Temperature/Emissivity 8-Day L3 Global 1 km SIN Grid V006 [Data set] (2015). https://doi.org/10.5067/MODIS/MYD11A2.006
Busetto, L., Ranghetti, L.: MODIStsp: an R package for automatic preprocessing of MODIS land products time series. Comput. Geosci. 97, 40–48 (2016). https://doi.org/10.1016/J.CAGEO.2016.08.020
Arnfield, A.J.: Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat Island. Int. J. Climatol. 23, 1–26 (2003). https://doi.org/10.1002/joc.859
Mazzariello, A., Pilogallo, A., Scorza, F., Murgante, B., Las Casas, G.: Carbon stock as an indicator for the estimation of anthropic pressure on territorial components. In: Gervasi, O., et al. (eds.) ICCSA 2018. LNCS, vol. 10964, pp. 697–711. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95174-4_53
Scorza, F., Pilogallo, A., Las Casas, G.: Investigating tourism attractiveness in inland areas: ecosystem services, open data and smart specializations. In: Calabrò, F., Della Spina, L., Bevilacqua, C. (eds.) ISHT 2018. SIST, vol. 100, pp. 30–38. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-92099-3_4
Pilogallo, A., Saganeiti, L., Scorza, F., Las Casas, G.: Tourism attractiveness: main components for a spacial appraisal of major destinations according with ecosystem services approach. In: Gervasi, O., et al. (eds.) ICCSA 2018. LNCS, vol. 10964, pp. 712–724. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95174-4_54
Scorza, F.: Towards self energy-management and sustainable citizens’ engagement in local energy efficiency agenda. Int. J. Agric. Environ. Inf. Syst. 7, 44–53 (2016). https://doi.org/10.4018/IJAEIS.2016010103
Acknowledgements
This research has been developed within the MEVCSU and INDICARE projects supported by the Environmental Observatory Foundation of Basilicata Region (FARBAS).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Pilogallo, A., Saganeiti, L., Scorza, F., Murgante, B. (2019). Investigating Urban Growth Dynamic – Land Surface Temperature Relationship. In: Misra, S., et al. Computational Science and Its Applications – ICCSA 2019. ICCSA 2019. Lecture Notes in Computer Science(), vol 11621. Springer, Cham. https://doi.org/10.1007/978-3-030-24302-9_51
Download citation
DOI: https://doi.org/10.1007/978-3-030-24302-9_51
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-24301-2
Online ISBN: 978-3-030-24302-9
eBook Packages: Computer ScienceComputer Science (R0)