Abstract
Kriging is one of the most used spatial estimation methods in real-world applications. In kriging estimation, some parameters must be estimated in order to reach a good accuracy in the interpolation process, however, this step is still a challenge. Various optimization methods have been tested to find good parameters to this process, however, in recent years, many authors are using bio-inspired techniques and reaching good results in estimating these parameters. This paper presents a comparison between well-known bio-inspired techniques such as Genetic Algorithms, Differential Evolution and Particle Swarm Optimization in the estimation of the essential kriging parameters: nugget, sill, range, angle, and factor. We also proposed an improved cluster-based kriging method to perform the tests. The results shows that the algorithms have a similar accuracy in estimating these parameters, and the number of clusters have a high impact on the results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Hengl, T.: A Practical Guide to Geostatistical Mapping. 52 edn. (2009)
Tugrul, B., Polat, H.: Privacy-preserving kriging interpolation on distributed data. In: Murgante, B., et al. (eds.) ICCSA 2014. LNCS, vol. 8584, pp. 695–708. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09153-2_52
Schernthanner, H., Steppan, S., Kuntzsch, C., Borg, E., Asche, H.: Automated web-based geoprocessing of rental prices. In: Gervasi, O., et al. (eds.) ICCSA 2017. LNCS, vol. 10407, pp. 512–524. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62401-3_37
Ocal, D., Kentel, E.: A GIS tool to estimate flow at ungaged basins using the map correlation method. In: Gervasi, O., et al. (eds.) ICCSA 2017. LNCS, vol. 10407, pp. 377–391. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62401-3_28
Wei, Z., Liu, Z., Chen, Q.: Ga-based kriging for isoline drawing. In: 2010 International Conference on Environmental Science and Information Application Technology (ESIAT), vol. 2, pp. 170–173. IEEE (2010)
Xialin, Z., Zhengping, W., Zhanglin, L., Chonglong, W.: An intelligent improvement on the reliability of ordinary kriging estimates by a GA. In: 2010 Second WRI Global Congress on Intelligent Systems (GCIS), vol. 2, pp. 61–64. IEEE (2010)
Gonçalves, I., Kumaira, S., Guadagnin, F.: A machine learning approach to the potential-field method for implicit modeling of geological structures. Comput. Geosci. 103, 173–182 (2017)
Li, Z., Zhang, X., Clarke, K., Liu, G., Zhu, R.: An automatic variogram modeling method with high reliability fitness and estimates. Comput. Geosci. 120, 48–59 (2018)
Abedini, M.J., Nasseri, M., Burn, D.H.: The use of a genetic algorithm-based search strategy in geostatistics: application to a set of anisotropic piezometric head data. Comput. Geosci. 41, 136–146 (2012)
Rat Atalay, F., Ertunç, G.: Metaheuristic kriging: a new spatial estimation method. Hacet. J. Math. Stat. 46(3), 483–492 (2017)
Shang, X., Ma, P., Yang, M.: An improved kriging model based on differential evolution. In: Proceedings of The 9th EUROSIM Congress on Modelling and Simulation, EUROSIM 2016, no. 142, pp. 356–361 (2018)
Wang, Z., Chang, Z., Luo, Q., Hua, S., Zhao, H., Kang, Y.: Optimization of riveting parameters using kriging and particle swarm optimization to improve deformation homogeneity in aircraft assembly. Adv. Mech. Eng. 9(8), 1687814017719003 (2017)
Abedini, M.J., Nasseri, M., Ansari, A.: Cluster-based ordinary kriging of piezometric head in West Texas/New Mexico-testing of hypothesis. J. Hydrol. 351(3–4), 360–367 (2008)
Witten, I.H., Frank, E., Hall, M.A., Pal, C.J.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, Burlington (2016)
Goldberg, D.E., Holland, J.H.: Genetic algorithms and machine learning. Mach. Learn. 3(2), 95–99 (1988)
Scrucca, L.: GA: a package for genetic algorithms in R. J. Stat. Softw. 53(4), 1–37 (2013)
Karaboğa, D., Ökdem, S.: A simple and global optimization algorithm for engineering problems: differential evolution algorithm. Turk. J. Electr. Eng. Comput. Sci. 12(1), 53–60 (2004)
Mullen, K.M., Ardia, D., Gil, D.L., Windover, D., Cline, J.: DEoptim: an R package for global optimization by differential evolution. J. Stat. Softw. 40, 1–26 (2009)
Mishra, K.K., Tiwari, S., Misra, A.K.: A bio inspired algorithm for solving optimization problems. In: 2011 2nd International Conference on Computer and Communication Technology, pp. 653–659 (2011)
Cressie, N.: Fitting variogram models by weighted least squares. J. Int. Assoc. Math. Geol. 17(5), 563–586 (1985)
Deep, K., Thakur, M.: A new crossover operator for real coded genetic algorithms. Appl. Math. Comput. 188(1), 895–911 (2007)
Deep, K., Thakur, M.: A new mutation operator for real coded genetic algorithms. Appl. Math. Comput. 193(1), 211–230 (2007)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Yasojima, C., Ramos, T., Araujo, T., Meiguins, B., Neto, N., Morais, J. (2019). Evaluation of Bio-Inspired Algorithms in Cluster-Based Kriging Optimization. In: Misra, S., et al. Computational Science and Its Applications – ICCSA 2019. ICCSA 2019. Lecture Notes in Computer Science(), vol 11619. Springer, Cham. https://doi.org/10.1007/978-3-030-24289-3_54
Download citation
DOI: https://doi.org/10.1007/978-3-030-24289-3_54
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-24288-6
Online ISBN: 978-3-030-24289-3
eBook Packages: Computer ScienceComputer Science (R0)