iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-030-24289-3_54
Evaluation of Bio-Inspired Algorithms in Cluster-Based Kriging Optimization | SpringerLink
Skip to main content

Evaluation of Bio-Inspired Algorithms in Cluster-Based Kriging Optimization

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2019 (ICCSA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11619))

Included in the following conference series:

Abstract

Kriging is one of the most used spatial estimation methods in real-world applications. In kriging estimation, some parameters must be estimated in order to reach a good accuracy in the interpolation process, however, this step is still a challenge. Various optimization methods have been tested to find good parameters to this process, however, in recent years, many authors are using bio-inspired techniques and reaching good results in estimating these parameters. This paper presents a comparison between well-known bio-inspired techniques such as Genetic Algorithms, Differential Evolution and Particle Swarm Optimization in the estimation of the essential kriging parameters: nugget, sill, range, angle, and factor. We also proposed an improved cluster-based kriging method to perform the tests. The results shows that the algorithms have a similar accuracy in estimating these parameters, and the number of clusters have a high impact on the results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hengl, T.: A Practical Guide to Geostatistical Mapping. 52 edn. (2009)

    Google Scholar 

  2. Tugrul, B., Polat, H.: Privacy-preserving kriging interpolation on distributed data. In: Murgante, B., et al. (eds.) ICCSA 2014. LNCS, vol. 8584, pp. 695–708. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09153-2_52

    Chapter  Google Scholar 

  3. Schernthanner, H., Steppan, S., Kuntzsch, C., Borg, E., Asche, H.: Automated web-based geoprocessing of rental prices. In: Gervasi, O., et al. (eds.) ICCSA 2017. LNCS, vol. 10407, pp. 512–524. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62401-3_37

    Chapter  Google Scholar 

  4. Ocal, D., Kentel, E.: A GIS tool to estimate flow at ungaged basins using the map correlation method. In: Gervasi, O., et al. (eds.) ICCSA 2017. LNCS, vol. 10407, pp. 377–391. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62401-3_28

    Chapter  Google Scholar 

  5. Wei, Z., Liu, Z., Chen, Q.: Ga-based kriging for isoline drawing. In: 2010 International Conference on Environmental Science and Information Application Technology (ESIAT), vol. 2, pp. 170–173. IEEE (2010)

    Google Scholar 

  6. Xialin, Z., Zhengping, W., Zhanglin, L., Chonglong, W.: An intelligent improvement on the reliability of ordinary kriging estimates by a GA. In: 2010 Second WRI Global Congress on Intelligent Systems (GCIS), vol. 2, pp. 61–64. IEEE (2010)

    Google Scholar 

  7. Gonçalves, I., Kumaira, S., Guadagnin, F.: A machine learning approach to the potential-field method for implicit modeling of geological structures. Comput. Geosci. 103, 173–182 (2017)

    Google Scholar 

  8. Li, Z., Zhang, X., Clarke, K., Liu, G., Zhu, R.: An automatic variogram modeling method with high reliability fitness and estimates. Comput. Geosci. 120, 48–59 (2018)

    Google Scholar 

  9. Abedini, M.J., Nasseri, M., Burn, D.H.: The use of a genetic algorithm-based search strategy in geostatistics: application to a set of anisotropic piezometric head data. Comput. Geosci. 41, 136–146 (2012)

    Google Scholar 

  10. Rat Atalay, F., Ertunç, G.: Metaheuristic kriging: a new spatial estimation method. Hacet. J. Math. Stat. 46(3), 483–492 (2017)

    MATH  MathSciNet  Google Scholar 

  11. Shang, X., Ma, P., Yang, M.: An improved kriging model based on differential evolution. In: Proceedings of The 9th EUROSIM Congress on Modelling and Simulation, EUROSIM 2016, no. 142, pp. 356–361 (2018)

    Google Scholar 

  12. Wang, Z., Chang, Z., Luo, Q., Hua, S., Zhao, H., Kang, Y.: Optimization of riveting parameters using kriging and particle swarm optimization to improve deformation homogeneity in aircraft assembly. Adv. Mech. Eng. 9(8), 1687814017719003 (2017)

    Google Scholar 

  13. Abedini, M.J., Nasseri, M., Ansari, A.: Cluster-based ordinary kriging of piezometric head in West Texas/New Mexico-testing of hypothesis. J. Hydrol. 351(3–4), 360–367 (2008)

    Google Scholar 

  14. Witten, I.H., Frank, E., Hall, M.A., Pal, C.J.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, Burlington (2016)

    Google Scholar 

  15. Goldberg, D.E., Holland, J.H.: Genetic algorithms and machine learning. Mach. Learn. 3(2), 95–99 (1988)

    Google Scholar 

  16. Scrucca, L.: GA: a package for genetic algorithms in R. J. Stat. Softw. 53(4), 1–37 (2013)

    Google Scholar 

  17. Karaboğa, D., Ökdem, S.: A simple and global optimization algorithm for engineering problems: differential evolution algorithm. Turk. J. Electr. Eng. Comput. Sci. 12(1), 53–60 (2004)

    Google Scholar 

  18. Mullen, K.M., Ardia, D., Gil, D.L., Windover, D., Cline, J.: DEoptim: an R package for global optimization by differential evolution. J. Stat. Softw. 40, 1–26 (2009)

    Google Scholar 

  19. Mishra, K.K., Tiwari, S., Misra, A.K.: A bio inspired algorithm for solving optimization problems. In: 2011 2nd International Conference on Computer and Communication Technology, pp. 653–659 (2011)

    Google Scholar 

  20. Cressie, N.: Fitting variogram models by weighted least squares. J. Int. Assoc. Math. Geol. 17(5), 563–586 (1985)

    MathSciNet  Google Scholar 

  21. Deep, K., Thakur, M.: A new crossover operator for real coded genetic algorithms. Appl. Math. Comput. 188(1), 895–911 (2007)

    MATH  MathSciNet  Google Scholar 

  22. Deep, K., Thakur, M.: A new mutation operator for real coded genetic algorithms. Appl. Math. Comput. 193(1), 211–230 (2007)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Yasojima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yasojima, C., Ramos, T., Araujo, T., Meiguins, B., Neto, N., Morais, J. (2019). Evaluation of Bio-Inspired Algorithms in Cluster-Based Kriging Optimization. In: Misra, S., et al. Computational Science and Its Applications – ICCSA 2019. ICCSA 2019. Lecture Notes in Computer Science(), vol 11619. Springer, Cham. https://doi.org/10.1007/978-3-030-24289-3_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24289-3_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24288-6

  • Online ISBN: 978-3-030-24289-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics