iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-030-24258-9_2
Short Proofs in QBF Expansion | SpringerLink
Skip to main content

Short Proofs in QBF Expansion

  • Conference paper
  • First Online:
Theory and Applications of Satisfiability Testing – SAT 2019 (SAT 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11628))

Abstract

For quantified Boolean formulas (QBF) there are two main different approaches to solving: conflict-driven clause learning (QCDCL) and expansion solving. In this paper we compare the underlying proof systems and show that expansion systems admit strictly shorter proofs than QCDCL systems for formulas of bounded quantifier complexity, thus pointing towards potential advantages of expansion solving techniques over QCDCL solving.

Our first result shows that tree-like expansion systems allow short proofs of QBFs that are a source of hardness for QCDCL, i.e. tree-like \(\forall \textsf {Exp{+}Res}\) is strictly stronger than tree-like Q-Resolution.

In our second result we efficiently transform dag-like Q-Resolution proofs of QBFs with bounded quantifier complexity into \(\forall \textsf {Exp{+}Res}\) proofs. This is theoretical confirmation of experimental findings by Lonsing and Egly, who observed that expansion QBF solvers often outperform QCDCL solvers on instances with few quantifier alternations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Balabanov, V., Jiang, J.H.R.: Unified QBF certification and its applications. Formal Methods Syst. Des. 41(1), 45–65 (2012)

    Article  Google Scholar 

  2. Benedetti, M., Mangassarian, H.: QBF-based formal verification: experience and perspectives. J. Satisfiability Boolean Model. Comput. (JSAT) 5(1–4), 133–191 (2008)

    MathSciNet  MATH  Google Scholar 

  3. Beyersdorff, O., Bonacina, I., Chew, L.: Lower bounds: from circuits to QBF proof systems. In: Proceedings of the ACM Conference on Innovations in Theoretical Computer Science (ITCS 2016), pp. 249–260. ACM (2016)

    Google Scholar 

  4. Beyersdorff, O., Chew, L., Janota, M.: Proof complexity of resolution-based QBF calculi. In: Proceedings of the Symposium on Theoretical Aspects of Computer Science, pp. 76–89. LIPIcs Series (2015)

    Google Scholar 

  5. Beyersdorff, O., Chew, L., Mahajan, M., Shukla, A.: Are short proofs narrow? QBF resolution is not so simple. ACM Trans. Comput. Logic 19(1), 1:1–1:26 (2018). (preliminary version in STACS 2016)

    MathSciNet  MATH  Google Scholar 

  6. Beyersdorff, O., Chew, L., Mahajan, M., Shukla, A.: Understanding cutting planes for QBFs. Inf. Comput. 262, 141–161 (2018)

    Article  MathSciNet  Google Scholar 

  7. Beyersdorff, O., Galesi, N., Lauria, M.: A characterization of tree-like resolution size. Inf. Process. Lett. 113(18), 666–671 (2013)

    Article  MathSciNet  Google Scholar 

  8. Beyersdorff, O., Pich, J.: Understanding Gentzen and Frege systems for QBF. In: Proceedings of the ACM/IEEE Symposium on Logic in Computer Science (LICS 2016) (2016)

    Google Scholar 

  9. Blinkhorn, J., Beyersdorff, O.: Shortening QBF proofs with dependency schemes. In: Gaspers, S., Walsh, T. (eds.) SAT 2017. LNCS, vol. 10491, pp. 263–280. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66263-3_17

    Chapter  Google Scholar 

  10. Buss, S.R.: Towards NP-P via proof complexity and search. Ann. Pure Appl. Logic 163(7), 906–917 (2012)

    Article  MathSciNet  Google Scholar 

  11. Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems. J. Symb. Logic 44(1), 36–50 (1979)

    Article  MathSciNet  Google Scholar 

  12. Egly, U., Kronegger, M., Lonsing, F., Pfandler, A.: Conformant planning as a case study of incremental QBF solving. Ann. Math. Artif. Intell. 80(1), 21–45 (2017)

    Article  MathSciNet  Google Scholar 

  13. Egly, U., Lonsing, F., Widl, M.: Long-distance resolution: proof generation and strategy extraction in search-based QBF solving. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 291–308. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45221-5_21

    Chapter  MATH  Google Scholar 

  14. Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.: Solving QBF with counterexample guided refinement. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 114–128. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31612-8_10

    Chapter  Google Scholar 

  15. Janota, M., Marques-Silva, J.: Expansion-based QBF solving versus Q-resolution. Theor. Comput. Sci. 577, 25–42 (2015)

    Article  MathSciNet  Google Scholar 

  16. Kleine Büning, H., Bubeck, U.: Theory of quantified Boolean formulas. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, vol. 185, pp. 735–760. IOS Press (2009)

    Google Scholar 

  17. Kleine Büning, H., Karpinski, M., Flögel, A.: Resolution for quantified Boolean formulas. Inf. Comput. 117(1), 12–18 (1995)

    Article  MathSciNet  Google Scholar 

  18. Klieber, W., Sapra, S., Gao, S., Clarke, E.: A non-prenex, non-clausal QBF solver with game-state learning. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 128–142. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14186-7_12

    Chapter  Google Scholar 

  19. Kontchakov, R., et al.: Minimal module extraction from DL-lite ontologies using QBF solvers. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pp. 836–841. AAAI Press (2009)

    Google Scholar 

  20. Lonsing, F.: Dependency schemes and search-based QBF solving: theory and practice. Ph.D. thesis, Johannes Kepler University (2012)

    Google Scholar 

  21. Lonsing, F., Biere, A.: DepQBF: a dependency-aware QBF solver. JSAT 7(2–3), 71–76 (2010)

    Google Scholar 

  22. Lonsing, F., Egly, U.: Evaluating QBF solvers: quantifier alternations matter. In: Hooker, J. (ed.) CP 2018. LNCS, vol. 11008, pp. 276–294. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98334-9_19

    Chapter  Google Scholar 

  23. Nordström, J.: On the interplay between proof complexity and SAT solving. SIGLOG News 2(3), 19–44 (2015)

    Google Scholar 

  24. Rabe, M.N., Tentrup, L.: CAQE: a certifying QBF solver. In: Proceedings of the 15th Conference on Formal Methods in Computer-Aided Design, pp. 136–143. FMCAD Inc. (2015)

    Google Scholar 

  25. Vardi, M.Y.: Boolean satisfiability: theory and engineering. Commun. ACM 57(3), 5 (2014)

    Article  Google Scholar 

  26. Zhang, L., Malik, S.: Conflict driven learning in a quantified Boolean satisfiability solver. In: ICCAD, pp. 442–449 (2002)

    Google Scholar 

Download references

Acknowledgements

Some of this work was done at Dagstuhl Seminar 18051, Proof Complexity. Research supported by the John Templeton Foundation and the Carl Zeiss Foundation (1st author) and EPSRC (2nd author).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith Clymo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Beyersdorff, O., Chew, L., Clymo, J., Mahajan, M. (2019). Short Proofs in QBF Expansion. In: Janota, M., Lynce, I. (eds) Theory and Applications of Satisfiability Testing – SAT 2019. SAT 2019. Lecture Notes in Computer Science(), vol 11628. Springer, Cham. https://doi.org/10.1007/978-3-030-24258-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24258-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24257-2

  • Online ISBN: 978-3-030-24258-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics