Abstract
Personalized tag recommender systems suggest tags to users when annotating specific items. Usually, recommender systems need to take both users’ preference and items’ features into account. Existing methods like latent factor models based on tensor factorization use low-dimensional dense vectors to represent latent features of users, items and tags. The problem with these models is using the static representation for the user, which neglects that users’ preference keeps evolving over time. Other methods based on base-level learning (BLL) only use a simple time-decay function to weight users’ preference. In this paper, we propose a personalized tag recommender system based on neural networks and attention mechanism. This approach utilizes the multi-layer perceptron to model the non-linearities of interactions among users, items and tags. Also, an attention network is introduced to capture the complex pattern of the user’s tagging sequence. Extensive experiments on two real-world datasets show that the proposed model outperforms the state-of-the-art tag recommendation method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Both datasets can be found in http://files.grouplens.org/datasets/hetrec2011.
References
Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate (2014). arXiv preprint: arXiv:1409.0473
Chen, X., et al.: Sequential recommendation with user memory networks. In: Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, pp. 108–116. ACM (2018)
Du, N., Wang, Y., He, N., Sun, J., Song, L.: Time-sensitive recommendation from recurrent user activities. In: Advances in Neural Information Processing Systems, pp. 3492–3500 (2015)
Fang, X., Pan, R., Cao, G., He, X., Dai, W.: Personalized tag recommendation through nonlinear tensor factorization using Gaussian kernel. In: AAAI, pp. 439–445 (2015)
Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 315–323 (2011)
He, X., Chen, T., Kan, M.Y., Chen, X.: TriRank: review-aware explainable recommendation by modeling aspects. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, pp. 1661–1670. ACM (2015)
He, X., Du, X., Wang, X., Tian, F., Tang, J., Chua, T.S.: Outer product-based neural collaborative filtering (2018). arXiv preprint: arXiv:1808.03912
He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.S.: Neural collaborative filtering. In: Proceedings of the 26th International Conference on World Wide Web, pp. 173–182. International World Wide Web Conferences Steering Committee (2017)
Hidasi, B., Karatzoglou, A., Baltrunas, L., Tikk, D.: Session-based recommendations with recurrent neural networks (2015). arXiv preprint: arXiv:1511.06939
Hotho, A., Jäschke, R., Schmitz, C., Stumme, G.: Information retrieval in folksonomies: search and ranking. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 411–426. Springer, Heidelberg (2006). https://doi.org/10.1007/11762256_31
Jäschke, R., Marinho, L., Hotho, A., Schmidt-Thieme, L., Stumme, G.: Tag recommendations in folksonomies. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) PKDD 2007. LNCS (LNAI), vol. 4702, pp. 506–514. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74976-9_52
Koren, Y.: Collaborative filtering with temporal dynamics. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 447–456. ACM (2009)
Kowald, D., Kopeinik, S., Seitlinger, P., Ley, T., Albert, D., Trattner, C.: Refining frequency-based tag reuse predictions by means of time and semantic context. In: Atzmueller, M., Chin, A., Scholz, C., Trattner, C. (eds.) MSM/MUSE 2013. LNCS (LNAI), vol. 8940, pp. 55–74. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-14723-9_4
Kowald, D., Lex, E.: Evaluating tag recommender algorithms in real-world folksonomies: a comparative study. In: Proceedings of the 9th ACM Conference on Recommender Systems, pp. 265–268. ACM (2015)
Kowald, D., Seitlinger, P., Kopeinik, S., Ley, T., Trattner, C.: Forgetting the words but remembering the meaning: modeling forgetting in a verbal and semantic tag recommender. In: Atzmueller, M., Chin, A., Scholz, C., Trattner, C. (eds.) MSM/MUSE 2013. LNCS (LNAI), vol. 8940, pp. 75–95. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-14723-9_5
Kowald, D., Seitlinger, P., Trattner, C., Ley, T.: Long time no see: the probability of reusing tags as a function of frequency and recency. In: Proceedings of the 23rd International Conference on World Wide Web, pp. 463–468. ACM (2014)
Lin, Z., et al.: A structured self-attentive sentence embedding (2017). arXiv preprint: arXiv:1703.03130
Marinho, L.B., Schmidt-Thieme, L.: Collaborative tag recommendations. In: Preisach, C., Burkhardt, H., Schmidt-Thieme, L., Decker, R. (eds.) Data Analysis, Machine Learning and Applications. Studies in Classification, Data Analysis, and Knowledge Organization, pp. 533–540. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78246-9_63
Quadrana, M., Cremonesi, P., Jannach, D.: Sequence-aware recommender systems (2018). arXiv preprint: arXiv:1802.08452
Rendle, S., Balby Marinho, L., Nanopoulos, A., Schmidt-Thieme, L.: Learning optimal ranking with tensor factorization for tag recommendation. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 727–736. ACM (2009)
Rendle, S., Schmidt-Thieme, L.: Pairwise interaction tensor factorization for personalized tag recommendation. In: Proceedings of the Third ACM International Conference on Web Search and Data Mining, pp. 81–90. ACM (2010)
Seitlinger, P., Kowald, D., Trattner, C., Ley, T.: Recommending tags with a model of human categorization. In: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, pp. 2381–2386. ACM (2013)
Symeonidis, P., Nanopoulos, A., Manolopoulos, Y.: Tag recommendations based on tensor dimensionality reduction. In: Proceedings of the 2008 ACM Conference on Recommender Systems, pp. 43–50. ACM (2008)
Wang, K., Jin, Y., Wang, H., Peng, H., Wang, X.: Personalized time-aware tag recommendation. In: AAAI Conference on Artificial Intelligence (2018)
Wang, S., Hu, L., Cao, L., Huang, X., Lian, D., Liu, W.: Attention-based transactional context embedding for next-item recommendation. AAAI (2018)
Wang, W., Zhang, W., Wang, J., Yan, J., Zha, H.: Learning sequential correlation for user generated textual content popularity prediction. In: IJCAI, pp. 1625–1631 (2018)
Wu, C.Y., Ahmed, A., Beutel, A., Smola, A.J., Jing, H.: Recurrent recommender networks. In: Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, pp. 495–503. ACM (2017)
Ying, H., et al.: Sequential recommender system based on hierarchical attention networks. In: 27th International Joint Conference on Artificial Intelligence (2018)
Zhang, L., Tang, J., Zhang, M.: Integrating temporal usage pattern into personalized tag prediction. In: Sheng, Q.Z., Wang, G., Jensen, C.S., Xu, G. (eds.) APWeb 2012. LNCS, vol. 7235, pp. 354–365. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29253-8_30
Zhou, C., et al.: ATRank: an attention-based user behavior modeling framework for recommendation (2017). arXiv preprint: arXiv:1711.06632
Acknowledgement
We thank the reviewers for their valuable and helpful comments. This work was supported by National Key R&D Program of China (No. 2017YFC0803700), NSFC grants (No. 61532021), Shanghai Knowledge Service Platform Project (No. ZF1213) and SHEITC.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Yuan, J., Jin, Y., Liu, W., Wang, X. (2019). Attention-Based Neural Tag Recommendation. In: Li, G., Yang, J., Gama, J., Natwichai, J., Tong, Y. (eds) Database Systems for Advanced Applications. DASFAA 2019. Lecture Notes in Computer Science(), vol 11447. Springer, Cham. https://doi.org/10.1007/978-3-030-18579-4_21
Download citation
DOI: https://doi.org/10.1007/978-3-030-18579-4_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-18578-7
Online ISBN: 978-3-030-18579-4
eBook Packages: Computer ScienceComputer Science (R0)