iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-030-18579-4_21
Attention-Based Neural Tag Recommendation | SpringerLink
Skip to main content

Attention-Based Neural Tag Recommendation

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11447))

Included in the following conference series:

Abstract

Personalized tag recommender systems suggest tags to users when annotating specific items. Usually, recommender systems need to take both users’ preference and items’ features into account. Existing methods like latent factor models based on tensor factorization use low-dimensional dense vectors to represent latent features of users, items and tags. The problem with these models is using the static representation for the user, which neglects that users’ preference keeps evolving over time. Other methods based on base-level learning (BLL) only use a simple time-decay function to weight users’ preference. In this paper, we propose a personalized tag recommender system based on neural networks and attention mechanism. This approach utilizes the multi-layer perceptron to model the non-linearities of interactions among users, items and tags. Also, an attention network is introduced to capture the complex pattern of the user’s tagging sequence. Extensive experiments on two real-world datasets show that the proposed model outperforms the state-of-the-art tag recommendation method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Both datasets can be found in http://files.grouplens.org/datasets/hetrec2011.

References

  1. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate (2014). arXiv preprint: arXiv:1409.0473

  2. Chen, X., et al.: Sequential recommendation with user memory networks. In: Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, pp. 108–116. ACM (2018)

    Google Scholar 

  3. Du, N., Wang, Y., He, N., Sun, J., Song, L.: Time-sensitive recommendation from recurrent user activities. In: Advances in Neural Information Processing Systems, pp. 3492–3500 (2015)

    Google Scholar 

  4. Fang, X., Pan, R., Cao, G., He, X., Dai, W.: Personalized tag recommendation through nonlinear tensor factorization using Gaussian kernel. In: AAAI, pp. 439–445 (2015)

    Google Scholar 

  5. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 315–323 (2011)

    Google Scholar 

  6. He, X., Chen, T., Kan, M.Y., Chen, X.: TriRank: review-aware explainable recommendation by modeling aspects. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, pp. 1661–1670. ACM (2015)

    Google Scholar 

  7. He, X., Du, X., Wang, X., Tian, F., Tang, J., Chua, T.S.: Outer product-based neural collaborative filtering (2018). arXiv preprint: arXiv:1808.03912

  8. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.S.: Neural collaborative filtering. In: Proceedings of the 26th International Conference on World Wide Web, pp. 173–182. International World Wide Web Conferences Steering Committee (2017)

    Google Scholar 

  9. Hidasi, B., Karatzoglou, A., Baltrunas, L., Tikk, D.: Session-based recommendations with recurrent neural networks (2015). arXiv preprint: arXiv:1511.06939

  10. Hotho, A., Jäschke, R., Schmitz, C., Stumme, G.: Information retrieval in folksonomies: search and ranking. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 411–426. Springer, Heidelberg (2006). https://doi.org/10.1007/11762256_31

    Chapter  Google Scholar 

  11. Jäschke, R., Marinho, L., Hotho, A., Schmidt-Thieme, L., Stumme, G.: Tag recommendations in folksonomies. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) PKDD 2007. LNCS (LNAI), vol. 4702, pp. 506–514. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74976-9_52

    Chapter  Google Scholar 

  12. Koren, Y.: Collaborative filtering with temporal dynamics. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 447–456. ACM (2009)

    Google Scholar 

  13. Kowald, D., Kopeinik, S., Seitlinger, P., Ley, T., Albert, D., Trattner, C.: Refining frequency-based tag reuse predictions by means of time and semantic context. In: Atzmueller, M., Chin, A., Scholz, C., Trattner, C. (eds.) MSM/MUSE 2013. LNCS (LNAI), vol. 8940, pp. 55–74. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-14723-9_4

    Chapter  Google Scholar 

  14. Kowald, D., Lex, E.: Evaluating tag recommender algorithms in real-world folksonomies: a comparative study. In: Proceedings of the 9th ACM Conference on Recommender Systems, pp. 265–268. ACM (2015)

    Google Scholar 

  15. Kowald, D., Seitlinger, P., Kopeinik, S., Ley, T., Trattner, C.: Forgetting the words but remembering the meaning: modeling forgetting in a verbal and semantic tag recommender. In: Atzmueller, M., Chin, A., Scholz, C., Trattner, C. (eds.) MSM/MUSE 2013. LNCS (LNAI), vol. 8940, pp. 75–95. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-14723-9_5

    Chapter  Google Scholar 

  16. Kowald, D., Seitlinger, P., Trattner, C., Ley, T.: Long time no see: the probability of reusing tags as a function of frequency and recency. In: Proceedings of the 23rd International Conference on World Wide Web, pp. 463–468. ACM (2014)

    Google Scholar 

  17. Lin, Z., et al.: A structured self-attentive sentence embedding (2017). arXiv preprint: arXiv:1703.03130

  18. Marinho, L.B., Schmidt-Thieme, L.: Collaborative tag recommendations. In: Preisach, C., Burkhardt, H., Schmidt-Thieme, L., Decker, R. (eds.) Data Analysis, Machine Learning and Applications. Studies in Classification, Data Analysis, and Knowledge Organization, pp. 533–540. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78246-9_63

    Chapter  Google Scholar 

  19. Quadrana, M., Cremonesi, P., Jannach, D.: Sequence-aware recommender systems (2018). arXiv preprint: arXiv:1802.08452

  20. Rendle, S., Balby Marinho, L., Nanopoulos, A., Schmidt-Thieme, L.: Learning optimal ranking with tensor factorization for tag recommendation. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 727–736. ACM (2009)

    Google Scholar 

  21. Rendle, S., Schmidt-Thieme, L.: Pairwise interaction tensor factorization for personalized tag recommendation. In: Proceedings of the Third ACM International Conference on Web Search and Data Mining, pp. 81–90. ACM (2010)

    Google Scholar 

  22. Seitlinger, P., Kowald, D., Trattner, C., Ley, T.: Recommending tags with a model of human categorization. In: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, pp. 2381–2386. ACM (2013)

    Google Scholar 

  23. Symeonidis, P., Nanopoulos, A., Manolopoulos, Y.: Tag recommendations based on tensor dimensionality reduction. In: Proceedings of the 2008 ACM Conference on Recommender Systems, pp. 43–50. ACM (2008)

    Google Scholar 

  24. Wang, K., Jin, Y., Wang, H., Peng, H., Wang, X.: Personalized time-aware tag recommendation. In: AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  25. Wang, S., Hu, L., Cao, L., Huang, X., Lian, D., Liu, W.: Attention-based transactional context embedding for next-item recommendation. AAAI (2018)

    Google Scholar 

  26. Wang, W., Zhang, W., Wang, J., Yan, J., Zha, H.: Learning sequential correlation for user generated textual content popularity prediction. In: IJCAI, pp. 1625–1631 (2018)

    Google Scholar 

  27. Wu, C.Y., Ahmed, A., Beutel, A., Smola, A.J., Jing, H.: Recurrent recommender networks. In: Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, pp. 495–503. ACM (2017)

    Google Scholar 

  28. Ying, H., et al.: Sequential recommender system based on hierarchical attention networks. In: 27th International Joint Conference on Artificial Intelligence (2018)

    Google Scholar 

  29. Zhang, L., Tang, J., Zhang, M.: Integrating temporal usage pattern into personalized tag prediction. In: Sheng, Q.Z., Wang, G., Jensen, C.S., Xu, G. (eds.) APWeb 2012. LNCS, vol. 7235, pp. 354–365. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29253-8_30

    Chapter  Google Scholar 

  30. Zhou, C., et al.: ATRank: an attention-based user behavior modeling framework for recommendation (2017). arXiv preprint: arXiv:1711.06632

Download references

Acknowledgement

We thank the reviewers for their valuable and helpful comments. This work was supported by National Key R&D Program of China (No. 2017YFC0803700), NSFC grants (No. 61532021), Shanghai Knowledge Service Platform Project (No. ZF1213) and SHEITC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoling Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yuan, J., Jin, Y., Liu, W., Wang, X. (2019). Attention-Based Neural Tag Recommendation. In: Li, G., Yang, J., Gama, J., Natwichai, J., Tong, Y. (eds) Database Systems for Advanced Applications. DASFAA 2019. Lecture Notes in Computer Science(), vol 11447. Springer, Cham. https://doi.org/10.1007/978-3-030-18579-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-18579-4_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-18578-7

  • Online ISBN: 978-3-030-18579-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics