iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-030-05414-4_42
Analysis of News Flow Dynamics Based on the Company Co-mention Network Characteristics | SpringerLink
Skip to main content

Analysis of News Flow Dynamics Based on the Company Co-mention Network Characteristics

  • Conference paper
  • First Online:
Complex Networks and Their Applications VII (COMPLEX NETWORKS 2018)

Abstract

In this paper company co-mentions network is formed as a graph in which vertexes represent the world’s largest companies mentioned in financial and economic news flow. If two companies were mentioned in the same news report then the edge between two nodes is included in the co-mentions graph. The edge weight between any two nodes is calculated as the amount of news items that mentioned both companies in a certain period of time. We examine the changes of the structural properties of the company co-mentions graph over time. We analyze the distribution of the degrees of the vertices in this graph, the edge density of this graph as well as its connectivity. Based on the analysis, we make some conclusions regarding the dynamics of the evolution of the news flow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abbasi, A., Altmann, J.: On the correlation between research performance and social network analysis measures applied to research collaboration networks. In: 44th Hawaii International Conference on System Sciences (HICSS), pp. 1–10. IEEE (2011)

    Google Scholar 

  2. Abello, J., Pardalos, P.M., Resende, M.G.C.: On maximum clique problems in very large graphs. External Memory Algorithms, pp. 119–130. American Mathematical Society, Providence (1999)

    Chapter  Google Scholar 

  3. Albert, R.: Scale-free networks in cell biology. J. Cell Sci. 118, 4947–4957 (2005)

    Article  Google Scholar 

  4. Albert, R., Barabasi, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002)

    Article  MathSciNet  Google Scholar 

  5. Anthonisse, J.M.: The rush in a directed graph. Technical (1971)

    Google Scholar 

  6. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999). https://doi.org/10.1126/science.286.5439.509, http://science.sciencemag.org/content/286/5439/509

  7. Boccaletti, S., L.V.M.Y.C.M., Hwang, D.U.: Complex networks: structure and dynamics. Phys. Rep. 424, 175–308 (2006)

    Google Scholar 

  8. Boginski, V., Butenko, S., Pardalos, P.M.: Statistical analysis of financial networks. Comput. Stat. Data Anal. 48(2), 431–443 (2005)

    Article  MathSciNet  Google Scholar 

  9. Boginski, V., Butenko, S., Pardalos, P.M.: Mining market data: a network approach. Comput. Oper. Res. 33(11), 3171 – 3184 (2006). https://doi.org/10.1016/j.cor.2005.01.027. Part Special Issue: Operations Research and Data Mining

  10. Bron, C., Kerbosch, J.: Algorithm 457: finding all cliques of an undirected graph. Commun. ACM 16(9), 575–577 (1973). http://doi.acm.org/10.1145/362342.362367

  11. Correa, C., Crnovrsanin, T., Ma, K.L.: Visual reasoning about social networks using centrality sensitivity. IEEE Trans. Vis. Comput. Graph. 18(1), 106–120 (2012)

    Article  Google Scholar 

  12. Dorogovtsev, S.N., Mendes, J.F.F.: Evolution of networks. Adv. Phys. 51, 1079 (2002)

    Article  Google Scholar 

  13. Eppstein, D., Löffler, M., Strash, D.: Listing all maximal cliques in sparse graphs in near-optimal time (2010). CoRR abs/1006.5440 arXiv:1006.5440

  14. Friedl, D.B., Heidemann, J., e.a.: A critical review of centrality measures in social networks. Bus. Inf. Syst. Eng. 2(6), 371–385 (2010)

    Google Scholar 

  15. Granovetter, M.: The strength of weak ties. Am. J. Sociol. 78, 1360 (1973)

    Article  Google Scholar 

  16. Huang, W.Q., Zhuang, X.T., Yao, S.: A network analysis of the chinese stock market. Phys. A Stat. Mech. Its Appl. 388(14), 2956–2964 (2009). https://doi.org/10.1016/j.physa.2009.03.028

  17. Kalyagin, V.A., Koldanov, A.P., Koldanov, P.A., Pardalos, P.M.: Optimal decision for the market graph identification problem in a sign similarity network. Ann. Oper. Res. (2017). https://doi.org/10.1007/s10479-017-2491-6

  18. Liu, B.: Web data mining. Springer, Berlin (2007)

    Google Scholar 

  19. Liu, X., Bollen, J., Nelson, M.L., de Sompel, V.: Co-authorship networks in the digital library research community. Inf. Process. Manag. 41(6), 1462–1480 (2005)

    Article  Google Scholar 

  20. Lofdahl, C., Stickgold, E., Skarin, B., Stewart, I.: Extending generative models of large scale networks. Proc. Manuf. 3(Supplement C), 3868 – 3875. In: 6th International Conference on Applied Human Factors and Ergonomics (AHFE 2015) and the Affiliated Conferences, AHFE 2015

    Google Scholar 

  21. Mitra, G., Mitra, L. (eds.): The Handbook of News Analytics in Finance. Wiley, New Jercy (2011)

    Google Scholar 

  22. Mitra, G., Yu, X. (eds.): Handbook of Sentiment Analysis in Finance (2016)

    Google Scholar 

  23. Newman, M.E.J.: The structure and function of complex networks. Siam Rev. 45, 167–256 (2003)

    Article  MathSciNet  Google Scholar 

  24. Ravasz, R., Barabasi, A.L.: Hierarchical organization in complex networks. Phys. Rev. E 67, 026,112 (2003)

    Article  Google Scholar 

  25. Ravasz R., S.A.L.M.D.A.O.Z.N., Barabasi, A.L.: Hierarchical organization of modularity in metabolic networks. Science 297, 1551–1555 (2002)

    Google Scholar 

  26. Sidorov, S.P., Faizliev, A.R., Balash, V.A., Gudkov, A.A., Chekmareva, A.Z., Anikin, P.K.: Company co-mention network analysis. In: Kalyagin, V.A., Pardalos, P.M., Prokopyev, O., Utkina, I. (eds.) Computational Aspects and Applications in Large-Scale Networks, pp. 341–354. Springer International Publishing, Cham (2018)

    Chapter  Google Scholar 

  27. Sidorov, S.P., et al.: Qap analysis of company co-mention network. In: Bonato, A., Prałat, P., Raigorodskii, A. (eds.) Algorithms and Models for the Web Graph, pp. 83–98. Springer International Publishing, Cham (2018)

    Chapter  Google Scholar 

  28. Wagner, A., Fell, D.A.: The small world inside large metabolic networks. Proc. R. Soc. Lond. Ser. B Biol. Sci. 268, 1803–1810 (2001)

    Article  Google Scholar 

  29. Wasserman, S., Faust, K.: Social network analysis: methods and applications. Cambridge University Press, Cambridge (1994)

    Google Scholar 

  30. Yook S. H., O.Z.N., Barabasi, A.L.: Functional and topological characterization of protein interaction networks. Proteomics 4, 928–942 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei Sidorov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Balash, V., Chekmareva, A., Faizliev, A., Sidorov, S., Mironov, S., Volkov, D. (2019). Analysis of News Flow Dynamics Based on the Company Co-mention Network Characteristics. In: Aiello, L., Cherifi, C., Cherifi, H., Lambiotte, R., Lió, P., Rocha, L. (eds) Complex Networks and Their Applications VII. COMPLEX NETWORKS 2018. Studies in Computational Intelligence, vol 813. Springer, Cham. https://doi.org/10.1007/978-3-030-05414-4_42

Download citation

Publish with us

Policies and ethics