iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-030-04612-5_19
Opinion Dynamics with Limited Information | SpringerLink
Skip to main content

Opinion Dynamics with Limited Information

  • Conference paper
  • First Online:
Web and Internet Economics (WINE 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11316))

Included in the following conference series:

Abstract

We study opinion formation games based on the Friedkin-Johnsen (FJ) model. We are interested in simple and natural variants of the FJ model that use limited information exchange in each round and converge to the same stable point. As in the FJ model, we assume that each agent i has an intrinsic opinion \(s_i \in [0,1]\) and maintains an expressed opinion \(x_i(t) \in [0,1]\) in each round t. To model limited information exchange, we assume that each agent i meets with one random friend j at each round t and learns only \(x_j(t)\). The amount of influence j imposes on i is reflected by the probability \(p_{ij}\) with which i meets j. Then, agent i suffers a disagreement cost that is a convex combination of \((x_i(t) - s_i)^2\) and \((x_i(t) - x_j(t))^2\).

An important class of dynamics in this setting are no regret dynamics. We show an exponential gap between the convergence rate of no regret dynamics and of more general dynamics that do not ensure no regret. We prove that no regret dynamics require roughly \({\varOmega }(1/\varepsilon )\) rounds to be within distance \(\varepsilon \) from the stable point \(x^*\) of the FJ model. On the other hand, we provide an opinion update rule that does not ensure no regret and converges to \(x^*\) in \({\tilde{O}}(\log ^2(1/\varepsilon ))\) rounds. Finally, we show that the agents can adopt a simple opinion update rule that ensures no regret and converges to \(x^*\) in \(\mathrm {poly}(1/\varepsilon )\) rounds.

Part of this work was performed while Vasilis Kontonis was a graduate student at the National Technical University of Athens.

Stratis Skoulakis is supported by a scholarship from the Onassis Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    These \(s,\alpha \) are scalars in [0, 1] and should not be confused with the internal opinion vector s and the self confidence vector \(\alpha \) of an instance \(I=(P,s,\alpha )\).

  2. 2.

    Online Gradient Descent is an influential no regret algorithm proposed by Zinkevic in [29] for the general OCO problem, where the adversary can select any convex function with bounded gradient. The latter directly implies that it also ensures no regret in our simpler OCO problem with \(\mathcal {F}_{s_i,\alpha _i}\) and \(\mathcal {K}=[0,1]\).

References

  1. Abebe, R., Kleinberg, J., Parkes, D., Tsourakakis, C.E.: Opinion dynamics with varying susceptibility to persuasion. CoRR abs/1801.07863 (2018)

    Google Scholar 

  2. Bertsekas, D., Tsitsiklis, J.: Parallel and Distributed Computation: Numerical Methods. Athena Scientific, Belmont (1997)

    MATH  Google Scholar 

  3. Bhawalkar, K., Gollapudi, S., Munagala, K.: Coevolutionary opinion formation games. In: Symposium on Theory of Computing Conference, STOC 2013, pp. 41–50 (2013)

    Google Scholar 

  4. Bilò, V., Fanelli, A., Moscardelli, L.: Opinion formation games with dynamic social influences. In: Cai, Y., Vetta, A. (eds.) WINE 2016. Lecture Notes in Computer Science, vol. 10123, pp. 444–458. Springer, Berlin (2016). https://doi.org/10.1007/978-3-662-54110-4_31

    Chapter  Google Scholar 

  5. Bindel, D., Kleinberg, J., Oren, S.: How bad is forming your own opinion? In: IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS 2011, pp. 57–66 (2011)

    Google Scholar 

  6. Chen, P., Chen, Y., Lu, C.: Bounds on the price of anarchy for a more general class of directed graphs in opinion formation games. Oper. Res. Lett. 44(6), 808–811 (2016)

    Article  MathSciNet  Google Scholar 

  7. Cohen, J., Héliou, A., Mertikopoulos, P.: Hedging under uncertainty: regret minimization meets exponentially fast convergence. In: Bilò, V., Flammini, M. (eds.) SAGT 2017. LNCS, vol. 10504, pp. 252–263. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66700-3_20

    Chapter  Google Scholar 

  8. DeGroot, M.: Reaching a consensus. J. Am. Stat. Assoc. 69, 118–121 (1974)

    Article  Google Scholar 

  9. Epitropou, M., Fotakis, D., Hoefer, M., Skoulakis, S.: Opinion formation games with aggregation and negative influence. In: Bilò, V., Flammini, M. (eds.) SAGT 2017. LNCS, vol. 10504, pp. 173–185. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66700-3_14

    Chapter  Google Scholar 

  10. Even-Dar, E., Mansour, Y., Nadav, U.: On the convergence of regret minimization dynamics in concave games. In: Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, pp. 523–532 (2009)

    Google Scholar 

  11. Ferraioli, D., Goldberg, P., Ventre, C.: Decentralized dynamics for finite opinion games. Theor. Comput. Sci. 648(C), 96–115 (2016)

    Article  MathSciNet  Google Scholar 

  12. Foster, D., Vohra, R.: Calibrated learning and correlated equilibrium. Games Econ. Behav. 21(1), 40–55 (1997)

    Article  MathSciNet  Google Scholar 

  13. Fotakis, D., Palyvos-Giannas, D., Skoulakis, S.: Opinion dynamics with local interactions. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI 2016, pp. 279–285 (2016)

    Google Scholar 

  14. Freund, Y., Schapire, R.: Adaptive game playing using multiplicative weights. Games Econ. Behav. 29(1), 79–103 (1999)

    Article  MathSciNet  Google Scholar 

  15. Friedkin, N., Johnsen, E.: Social influence and opinions. J. Math. Sociol. 15(3–4), 193–206 (1990)

    Article  Google Scholar 

  16. Ghaderi, J., Srikant, R.: Opinion dynamics in social networks with stubborn agents: equilibrium and convergence rate. Automatica 50(12), 3209–3215 (2014)

    Article  MathSciNet  Google Scholar 

  17. Gionis, A., Terzi, E., Tsaparas, P.: Opinion maximization in social networks. In: Proceedings of the 13th SIAM International Conference on Data Mining, SDM 2013, pp. 387–395 (2013)

    Chapter  Google Scholar 

  18. Hazan, E.: Introduction to online convex optimization. Found. Trends Optim. 2(3–4), 157–325 (2016)

    Article  Google Scholar 

  19. Hazan, E., Agarwal, A., Kale, S.: Logarithmic regret algorithms for online convex optimization. Mach. Learn. 69(2), 169–192 (2007)

    Article  Google Scholar 

  20. Hegselmann, R., Krause, U.: Opinion dynamics and bounded confidence models, analysis, and simulation. J. Artif. Soc. Soc. Simul. 5 (2002)

    Google Scholar 

  21. Héliou, A., Cohen, J., Mertikopoulos, P.: Learning with bandit feedback in potential games. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS 2017, pp. 6372–6381 (2017)

    Google Scholar 

  22. Jackson, M.: Social and Economic Networks. Princeton University Press, Princeton (2008)

    MATH  Google Scholar 

  23. Kleinberg, R., Piliouras, G., Tardos, É.: Multiplicative updates outperform generic no-regret learning in congestion games: extended abstract. In: Proceedings of 21st ACM Symposium on Theory of Computing (STOC 2009), pp. 533–542 (2009)

    Google Scholar 

  24. Kleinberg, R., Piliouras, G., Tardos, É.: Load balancing without regret in the bulletin board model. Distrib. Comput. 24(1), 21–29 (2011)

    Article  Google Scholar 

  25. Krackhardt, D.: A plunge into networks. Science 326(5949), 47–48 (2009). http://science.sciencemag.org/content/326/5949/47

    Article  Google Scholar 

  26. Mertikopoulos, P., Staudigl, M.: Convergence to nash equilibrium in continuous games with noisy first-order feedback. In: 56th IEEE Annual Conference on Decision and Control, CDC 2017, pp. 5609–5614 (2017)

    Google Scholar 

  27. Sergiu, S.H., Mas-Colell, A.: A simple adaptive procedure leading to correlated equilibrium. Econometrica 68(5), 1127–1150 (2000)

    Article  MathSciNet  Google Scholar 

  28. Yildiz, M., Ozdaglar, A., Acemoglu, D., Saberi, A., Scaglione, A.: Binary opinion dynamics with stubborn agents. ACM Trans. Econ. Comput. 1(4), 19:1–19:30 (2013)

    Article  Google Scholar 

  29. Zinkevich, M.: Online convex programming and generalized infinitesimal gradient ascent. In: Proceedings of the Twentieth International Conference on International Conference on Machine Learning, ICML 2003, pp. 928–935. AAAI Press (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stratis Skoulakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fotakis, D., Kandiros, V., Kontonis, V., Skoulakis, S. (2018). Opinion Dynamics with Limited Information. In: Christodoulou, G., Harks, T. (eds) Web and Internet Economics. WINE 2018. Lecture Notes in Computer Science(), vol 11316. Springer, Cham. https://doi.org/10.1007/978-3-030-04612-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04612-5_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04611-8

  • Online ISBN: 978-3-030-04612-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics