Abstract
Makaro is a logic game similar to Sudoku. In Makaro, a grid has to be filled with numbers such that: given areas contain all the numbers up to the number of cells in the area, no adjacent numbers are equal and some cells provide restrictions on the largest adjacent number. We propose a proven secure physical algorithm, only relying on cards, to realize a zero-knowledge proof of knowledge for Makaro. It allows a player to show that he knows a solution without revealing it.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Moreover, if \(\mathcal {P}\) is NP-complete, then the ZKP should be run in a polynomial time [11]. Otherwise it might be easier to find a solution than proving that a solution is a correct solution, making the proof pointless.
- 2.
This implies the standard soundness property, which ensures that if there exists no solution of the puzzle, then the prover is not able to convince the verifier regardless of the prover’s behavior.
References
Balogh, J., Csirik, J.A., Ishai, Y., Kushilevitz, E.: Private computation using a PEZ dispenser. Theor. Comput. Sci. 306(1–3), 69–84 (2003)
Bultel, X., Dreier, J., Dumas, J.-G., Lafourcade, P.: Physical zero-knowledge proofs for Akari, Takuzu, Kakuro and KenKen. In: Demaine, E.D., Grandoni, F. (eds.) 8th International Conference on Fun with Algorithms, FUN 2016. LIPIcs, La Maddalena, Italy, 8–10 June 2016, vol. 49, pp. 8:1–8:20 (2016)
Chien, Y.-F., Hon, W.-K.: Cryptographic and physical zero-knowledge proof: from Sudoku to Nonogram. In: Boldi, P., Gargano, L. (eds.) FUN 2010. LNCS, vol. 6099, pp. 102–112. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13122-6_12
Cramer, R., Damgård, I., Nielsen, J.B.: Multiparty computation from threshold homomorphic encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 280–300. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6_18
Crépeau, C., Kilian, J.: Discreet solitary games. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 319–330. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2_27
Damgård, I., Faust, S., Hazay, C.: Secure two-party computation with low communication. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 54–74. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9_4
Demaine, E.D.: Playing games with algorithms: algorithmic combinatorial game theory. In: Sgall, J., Pultr, A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136, pp. 18–33. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44683-4_3
Boer, B.: More efficient match-making and satisfiability the five card trick. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 208–217. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-46885-4_23
Foresti, S., Persiano, G. (eds.): Cryptology and Network Security - 15th International Conference, CANS 2016, Milan, Italy, 14–16 November 2016, Proceedings. LNCS, vol. 10052. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48965-0
Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity and a methodology of cryptographic protocol design. In: 27th Annual Symposium on Foundations of Computer Science (SFCS 1986), pp. 174–187, October 1986
Goldreich, O., Micali, S., Wigderson, A.: How to prove all NP statements in zero-knowledge and a methodology of cryptographic protocol design (extended abstract). In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 171–185. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_11
Gradwohl, R., Naor, M., Pinkas, B., Rothblum, G.N.: Cryptographic and physical zero-knowledge proof systems for solutions of Sudoku puzzles. In: Crescenzi, P., Prencipe, G., Pucci, G. (eds.) FUN 2007. LNCS, vol. 4475, pp. 166–182. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72914-3_16
Hanaoka, G.: Towards user-friendly cryptography. In: Phan, R.C.-W., Yung, M. (eds.) Mycrypt 2016. LNCS, vol. 10311, pp. 481–484. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61273-7_24
Hashimoto, Y., Shinagawa, K., Nuida, K., Inamura, M., Hanaoka, G.: Secure grouping protocol using a deck of cards. In: Shikata, J. (ed.) ICITS 2017. LNCS, vol. 10681, pp. 135–152. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72089-0_8
Hearn, R.A., Demaine, E.D.: Games, Puzzles, and Computation. A. K. Peters Ltd., Natick (2009)
Ibaraki, T., Manabe, Y.: A more efficient card-based protocol for generating a random permutation without fixed points. In: 2016 Third International Conference on Mathematics and Computers in Sciences and in Industry (MCSI), pp. 252–257, August 2016
Ishikawa, R., Chida, E., Mizuki, T.: Efficient card-based protocols for generating a hidden random permutation without fixed points. In: Calude, C.S., Dinneen, M.J. (eds.) UCNC 2015. LNCS, vol. 9252, pp. 215–226. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21819-9_16
Ito, H., Leonardi, S., Pagli, L., Prencipe, G. (eds.) 9th International Conference on Fun with Algorithms, FUN 2018. LIPIcs, La Maddalena, Italy, vol. 100. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, June 2018
Iwamoto, C., Haruishi, M., Ibusuki, T.: Herugolf and Makaro are NP-complete. In: Ito et al. [18], pp. 24:1–24:11
Kastner, J., et al.: The minimum number of cards in practical card-based protocols. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10626, pp. 126–155. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70700-6_5
Kendall, G., Parkes, A.J., Spoerer, K.: A survey of NP-complete puzzles. ICGA J. 31(1), 13–34 (2008)
Koch, A., Walzer, S., Härtel, K.: Card-based cryptographic protocols using a minimal number of cards. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 783–807. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6_32
Mizuki, T.: Efficient and secure multiparty computations using a standard deck of playing cards. In: Foresti and Persiano [9], pp. 484–499
Mizuki, T., Kugimoto, Y., Sone, H.: Secure multiparty computations using a dial lock. In: Cai, J.-Y., Cooper, S.B., Zhu, H. (eds.) TAMC 2007. LNCS, vol. 4484, pp. 499–510. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72504-6_45
Mizuki, T., Kugimoto, Y., Sone, H.: Secure multiparty computations using the 15 puzzle. In: Dress, A., Xu, Y., Zhu, B. (eds.) COCOA 2007. LNCS, vol. 4616, pp. 255–266. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73556-4_28
Mizuki, T., Kumamoto, M., Sone, H.: The five-card trick can be done with four cards. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 598–606. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4_36
Mizuki, T., Sone, H.: Six-card secure AND and four-card secure XOR. In: Deng, X., Hopcroft, J.E., Xue, J. (eds.) FAW 2009. LNCS, vol. 5598, pp. 358–369. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02270-8_36
Moran, T., Naor, M.: Basing cryptographic protocols on tamper-evident seals. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 285–297. Springer, Heidelberg (2005). https://doi.org/10.1007/11523468_24
Nakai, T., Tokushige, Y., Misawa, Y., Iwamoto, M., Ohta, K.: Efficient card-based cryptographic protocols for millionaires’ problem utilizing private permutations. In: Foresti and Persiano [9], pp. 500–517
Niemi, V., Renvall, A.: Secure multiparty computations without computers. Theor. Comput. Sci. 191(1), 173–183 (1998)
Nikoli: Makaro. https://www.nikoli.co.jp/en/puzzles/makaro.html
Nishida, T., Mizuki, T., Sone, H.: Securely computing the three-input majority function with eight cards. In: Dediu, A.-H., Martín-Vide, C., Truthe, B., Vega-Rodríguez, M.A. (eds.) TPNC 2013. LNCS, vol. 8273, pp. 193–204. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45008-2_16
Ramzy, I., Arora, A.: Using zero knowledge to share a little knowledge: bootstrapping trust in device networks. In: Défago, X., Petit, F., Villain, V. (eds.) SSS 2011. LNCS, vol. 6976, pp. 371–385. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24550-3_28
Romero-Tris, C., Castellà-Roca, J., Viejo, A.: Multi-party private web search with untrusted partners. In: Rajarajan, M., Piper, F., Wang, H., Kesidis, G. (eds.) SecureComm 2011. LNICST, vol. 96, pp. 261–280. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31909-9_15
Sasaki, T., Mizuki, T., Sone, H.: Card-based zero-knowledge proof for Sudoku. In: Ito et al. [18], pp. 29:1–29:10
Shamir, A.: IP = PSPACE. J. ACM 39(4), 869–877 (1992)
Shinagawa, K., et al.: Secure computation protocols using polarizing cards. IEICE Trans. 99-A(6), 1122–1131 (2016)
Shinagawa, K., et al.: Card-based protocols using regular polygon cards. IEICE Trans. 100-A(9), 1900–1909 (2017)
Stiglic, A.: Computations with a deck of cards. Theor. Comput. Sci. 259(1), 671–678 (2001)
Ueda, I., Nishimura, A., Hayashi, Y., Mizuki, T., Sone, H.: How to implement a random bisection cut. In: Martín-Vide, C., Mizuki, T., Vega-Rodríguez, M.A. (eds.) TPNC 2016. LNCS, vol. 10071, pp. 58–69. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49001-4_5
Acknowledgments
This work was supported in part by JSPS KAKENHI Grant Numbers 17J01169 and 17K00001. It was conducted with the support of the FEDER program of 2014-2020, the region council of Auvergne-Rhône-Alpes, the Indo-French Centre for the Promotion of Advanced Research (IFCPAR) and the Center Franco-Indien Pour La Promotion De La Recherche Avancée (CEFIPRA) through the project DST/CNRS 2015-03 under DST-INRIA-CNRS Targeted Programme.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Bultel, X. et al. (2018). Physical Zero-Knowledge Proof for Makaro. In: Izumi, T., Kuznetsov, P. (eds) Stabilization, Safety, and Security of Distributed Systems. SSS 2018. Lecture Notes in Computer Science(), vol 11201. Springer, Cham. https://doi.org/10.1007/978-3-030-03232-6_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-03232-6_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-03231-9
Online ISBN: 978-3-030-03232-6
eBook Packages: Computer ScienceComputer Science (R0)