iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-030-03232-6_8
Physical Zero-Knowledge Proof for Makaro | SpringerLink
Skip to main content

Physical Zero-Knowledge Proof for Makaro

  • Conference paper
  • First Online:
Stabilization, Safety, and Security of Distributed Systems (SSS 2018)

Abstract

Makaro is a logic game similar to Sudoku. In Makaro, a grid has to be filled with numbers such that: given areas contain all the numbers up to the number of cells in the area, no adjacent numbers are equal and some cells provide restrictions on the largest adjacent number. We propose a proven secure physical algorithm, only relying on cards, to realize a zero-knowledge proof of knowledge for Makaro. It allows a player to show that he knows a solution without revealing it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Moreover, if \(\mathcal {P}\) is NP-complete, then the ZKP should be run in a polynomial time [11]. Otherwise it might be easier to find a solution than proving that a solution is a correct solution, making the proof pointless.

  2. 2.

    This implies the standard soundness property, which ensures that if there exists no solution of the puzzle, then the prover is not able to convince the verifier regardless of the prover’s behavior.

References

  1. Balogh, J., Csirik, J.A., Ishai, Y., Kushilevitz, E.: Private computation using a PEZ dispenser. Theor. Comput. Sci. 306(1–3), 69–84 (2003)

    Article  MathSciNet  Google Scholar 

  2. Bultel, X., Dreier, J., Dumas, J.-G., Lafourcade, P.: Physical zero-knowledge proofs for Akari, Takuzu, Kakuro and KenKen. In: Demaine, E.D., Grandoni, F. (eds.) 8th International Conference on Fun with Algorithms, FUN 2016. LIPIcs, La Maddalena, Italy, 8–10 June 2016, vol. 49, pp. 8:1–8:20 (2016)

    Google Scholar 

  3. Chien, Y.-F., Hon, W.-K.: Cryptographic and physical zero-knowledge proof: from Sudoku to Nonogram. In: Boldi, P., Gargano, L. (eds.) FUN 2010. LNCS, vol. 6099, pp. 102–112. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13122-6_12

    Chapter  Google Scholar 

  4. Cramer, R., Damgård, I., Nielsen, J.B.: Multiparty computation from threshold homomorphic encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 280–300. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6_18

    Chapter  Google Scholar 

  5. Crépeau, C., Kilian, J.: Discreet solitary games. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 319–330. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2_27

    Chapter  Google Scholar 

  6. Damgård, I., Faust, S., Hazay, C.: Secure two-party computation with low communication. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 54–74. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9_4

    Chapter  Google Scholar 

  7. Demaine, E.D.: Playing games with algorithms: algorithmic combinatorial game theory. In: Sgall, J., Pultr, A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136, pp. 18–33. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44683-4_3

    Chapter  Google Scholar 

  8. Boer, B.: More efficient match-making and satisfiability the five card trick. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 208–217. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-46885-4_23

    Chapter  Google Scholar 

  9. Foresti, S., Persiano, G. (eds.): Cryptology and Network Security - 15th International Conference, CANS 2016, Milan, Italy, 14–16 November 2016, Proceedings. LNCS, vol. 10052. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48965-0

    Book  MATH  Google Scholar 

  10. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity and a methodology of cryptographic protocol design. In: 27th Annual Symposium on Foundations of Computer Science (SFCS 1986), pp. 174–187, October 1986

    Google Scholar 

  11. Goldreich, O., Micali, S., Wigderson, A.: How to prove all NP statements in zero-knowledge and a methodology of cryptographic protocol design (extended abstract). In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 171–185. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_11

    Chapter  Google Scholar 

  12. Gradwohl, R., Naor, M., Pinkas, B., Rothblum, G.N.: Cryptographic and physical zero-knowledge proof systems for solutions of Sudoku puzzles. In: Crescenzi, P., Prencipe, G., Pucci, G. (eds.) FUN 2007. LNCS, vol. 4475, pp. 166–182. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72914-3_16

    Chapter  Google Scholar 

  13. Hanaoka, G.: Towards user-friendly cryptography. In: Phan, R.C.-W., Yung, M. (eds.) Mycrypt 2016. LNCS, vol. 10311, pp. 481–484. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61273-7_24

    Chapter  Google Scholar 

  14. Hashimoto, Y., Shinagawa, K., Nuida, K., Inamura, M., Hanaoka, G.: Secure grouping protocol using a deck of cards. In: Shikata, J. (ed.) ICITS 2017. LNCS, vol. 10681, pp. 135–152. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72089-0_8

    Chapter  Google Scholar 

  15. Hearn, R.A., Demaine, E.D.: Games, Puzzles, and Computation. A. K. Peters Ltd., Natick (2009)

    MATH  Google Scholar 

  16. Ibaraki, T., Manabe, Y.: A more efficient card-based protocol for generating a random permutation without fixed points. In: 2016 Third International Conference on Mathematics and Computers in Sciences and in Industry (MCSI), pp. 252–257, August 2016

    Google Scholar 

  17. Ishikawa, R., Chida, E., Mizuki, T.: Efficient card-based protocols for generating a hidden random permutation without fixed points. In: Calude, C.S., Dinneen, M.J. (eds.) UCNC 2015. LNCS, vol. 9252, pp. 215–226. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21819-9_16

    Chapter  Google Scholar 

  18. Ito, H., Leonardi, S., Pagli, L., Prencipe, G. (eds.) 9th International Conference on Fun with Algorithms, FUN 2018. LIPIcs, La Maddalena, Italy, vol. 100. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, June 2018

    Google Scholar 

  19. Iwamoto, C., Haruishi, M., Ibusuki, T.: Herugolf and Makaro are NP-complete. In: Ito et al. [18], pp. 24:1–24:11

    Google Scholar 

  20. Kastner, J., et al.: The minimum number of cards in practical card-based protocols. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10626, pp. 126–155. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70700-6_5

    Chapter  Google Scholar 

  21. Kendall, G., Parkes, A.J., Spoerer, K.: A survey of NP-complete puzzles. ICGA J. 31(1), 13–34 (2008)

    Article  Google Scholar 

  22. Koch, A., Walzer, S., Härtel, K.: Card-based cryptographic protocols using a minimal number of cards. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 783–807. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6_32

    Chapter  Google Scholar 

  23. Mizuki, T.: Efficient and secure multiparty computations using a standard deck of playing cards. In: Foresti and Persiano [9], pp. 484–499

    Chapter  Google Scholar 

  24. Mizuki, T., Kugimoto, Y., Sone, H.: Secure multiparty computations using a dial lock. In: Cai, J.-Y., Cooper, S.B., Zhu, H. (eds.) TAMC 2007. LNCS, vol. 4484, pp. 499–510. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72504-6_45

    Chapter  Google Scholar 

  25. Mizuki, T., Kugimoto, Y., Sone, H.: Secure multiparty computations using the 15 puzzle. In: Dress, A., Xu, Y., Zhu, B. (eds.) COCOA 2007. LNCS, vol. 4616, pp. 255–266. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73556-4_28

    Chapter  Google Scholar 

  26. Mizuki, T., Kumamoto, M., Sone, H.: The five-card trick can be done with four cards. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 598–606. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4_36

    Chapter  Google Scholar 

  27. Mizuki, T., Sone, H.: Six-card secure AND and four-card secure XOR. In: Deng, X., Hopcroft, J.E., Xue, J. (eds.) FAW 2009. LNCS, vol. 5598, pp. 358–369. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02270-8_36

    Chapter  Google Scholar 

  28. Moran, T., Naor, M.: Basing cryptographic protocols on tamper-evident seals. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 285–297. Springer, Heidelberg (2005). https://doi.org/10.1007/11523468_24

    Chapter  Google Scholar 

  29. Nakai, T., Tokushige, Y., Misawa, Y., Iwamoto, M., Ohta, K.: Efficient card-based cryptographic protocols for millionaires’ problem utilizing private permutations. In: Foresti and Persiano [9], pp. 500–517

    Chapter  Google Scholar 

  30. Niemi, V., Renvall, A.: Secure multiparty computations without computers. Theor. Comput. Sci. 191(1), 173–183 (1998)

    Article  MathSciNet  Google Scholar 

  31. Nikoli: Makaro. https://www.nikoli.co.jp/en/puzzles/makaro.html

  32. Nishida, T., Mizuki, T., Sone, H.: Securely computing the three-input majority function with eight cards. In: Dediu, A.-H., Martín-Vide, C., Truthe, B., Vega-Rodríguez, M.A. (eds.) TPNC 2013. LNCS, vol. 8273, pp. 193–204. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45008-2_16

    Chapter  Google Scholar 

  33. Ramzy, I., Arora, A.: Using zero knowledge to share a little knowledge: bootstrapping trust in device networks. In: Défago, X., Petit, F., Villain, V. (eds.) SSS 2011. LNCS, vol. 6976, pp. 371–385. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24550-3_28

    Chapter  Google Scholar 

  34. Romero-Tris, C., Castellà-Roca, J., Viejo, A.: Multi-party private web search with untrusted partners. In: Rajarajan, M., Piper, F., Wang, H., Kesidis, G. (eds.) SecureComm 2011. LNICST, vol. 96, pp. 261–280. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31909-9_15

    Chapter  Google Scholar 

  35. Sasaki, T., Mizuki, T., Sone, H.: Card-based zero-knowledge proof for Sudoku. In: Ito et al. [18], pp. 29:1–29:10

    Google Scholar 

  36. Shamir, A.: IP = PSPACE. J. ACM 39(4), 869–877 (1992)

    Article  MathSciNet  Google Scholar 

  37. Shinagawa, K., et al.: Secure computation protocols using polarizing cards. IEICE Trans. 99-A(6), 1122–1131 (2016)

    Article  Google Scholar 

  38. Shinagawa, K., et al.: Card-based protocols using regular polygon cards. IEICE Trans. 100-A(9), 1900–1909 (2017)

    Article  Google Scholar 

  39. Stiglic, A.: Computations with a deck of cards. Theor. Comput. Sci. 259(1), 671–678 (2001)

    Article  MathSciNet  Google Scholar 

  40. Ueda, I., Nishimura, A., Hayashi, Y., Mizuki, T., Sone, H.: How to implement a random bisection cut. In: Martín-Vide, C., Mizuki, T., Vega-Rodríguez, M.A. (eds.) TPNC 2016. LNCS, vol. 10071, pp. 58–69. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49001-4_5

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported in part by JSPS KAKENHI Grant Numbers 17J01169 and 17K00001. It was conducted with the support of the FEDER program of 2014-2020, the region council of Auvergne-Rhône-Alpes, the Indo-French Centre for the Promotion of Advanced Research (IFCPAR) and the Center Franco-Indien Pour La Promotion De La Recherche Avancée (CEFIPRA) through the project DST/CNRS 2015-03 under DST-INRIA-CNRS Targeted Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazumasa Shinagawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bultel, X. et al. (2018). Physical Zero-Knowledge Proof for Makaro. In: Izumi, T., Kuznetsov, P. (eds) Stabilization, Safety, and Security of Distributed Systems. SSS 2018. Lecture Notes in Computer Science(), vol 11201. Springer, Cham. https://doi.org/10.1007/978-3-030-03232-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03232-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03231-9

  • Online ISBN: 978-3-030-03232-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics