iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-030-01762-0_17
Understanding Historical Cityscapes from Aerial Imagery Through Machine Learning | SpringerLink
Skip to main content

Understanding Historical Cityscapes from Aerial Imagery Through Machine Learning

  • Conference paper
  • First Online:
Digital Heritage. Progress in Cultural Heritage: Documentation, Preservation, and Protection (EuroMed 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11196))

Included in the following conference series:

  • 3573 Accesses

Abstract

Understanding cityscapes using remote sensing data has been an active research field for more than two decades. Meanwhile, machine learning provides generalization capabilities compared to hierarchical and rule-based methods. This paper evaluates several machine learning algorithms in order to fuse shadow detection and shadow compensation methods for building detection using high resolution aerial imagery. Three complex and real-life urban study areas were used as test datasets with various: (i) kinds of buildings structures of special architecture, (ii) pixel resolutions and, (iii) types of data. Objective evaluation metrics have been used for assessing the compared algorithms such recall, precision and F1-score as well as rates of completeness, correctness and quality. For both approaches, i.e., shadow detection and building detection, the computational complexity of each machine learning algorithm was examined. The results indicate that deep learning schemes, such a Convolutional Neural Network (CNN), provides the best classification performance in terms of shadow detection and building detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: CVPR, Seattle, WA, USA (2016)

    Google Scholar 

  2. Maltezos, Ε., Doulamis, Ν., Doulamis, A., Ioannidis, C.: Deep convolutional neural networks for building extraction from orthoimages and dense image matching point clouds. J. Appl. Remote Sens. 11(4), 042620-1–042620-22 (2017)

    Article  Google Scholar 

  3. Rottensteiner, F., Sohn, G., Gerke, M., Wegner, J.D., Breitkopf, U., Jung, J.: Results of the ISPRS benchmark on urban object detection and 3D building reconstruction. ISPRS J. Photogramm. Remote Sens. 93, 256–271 (2014)

    Article  Google Scholar 

  4. Doulamis, A., et al.: 5D modelling: an efficient approach for creating spatiotemporal predictive 3D maps of large-scale cultural resources. In: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences (PRSSIS), II5/W3, pp. 61–68 (2015)

    Article  Google Scholar 

  5. Lorenzi, L., Melgani, F., Mercier, G.: A complete processing chain for shadow detection and reconstruction in VHR images. IEEE TGARS 50(9), 3440–3452 (2012)

    Google Scholar 

  6. Song, H., Huang, B., Zhang, K.: Shadow detection and reconstruction in high-resolution satellite images via morphological filtering and example-based learning. IEEE TGARS 52(5), 2545–2554 (2013)

    Google Scholar 

  7. Guislain, M., Digne, J., Chaine, R., Kudelski, D., Lefebvre-Albaret, P.: Detecting and correcting shadows in urban point clouds and image collections. In: 3DV, pp. 1–9 (2016)

    Google Scholar 

  8. Hosseinzadeh, S., Shakeri, M., Hong, Z.: Fast shadow detection from a single image using a patched convolutional neural network. In: CVPR, Seattle, Honolulu, Hawaii (2017)

    Google Scholar 

  9. Luo, L., et al.: Automated extraction of the archaeological tops of qanat shafts from VHR imagery in Google Earth. Remote Sensing 6, 11956–11976 (2014)

    Article  Google Scholar 

  10. Doulamis, A., et al.: 4D reconstruction of the past. In: SPIE Proceedings, vol. 8795, pp. 1–11 (2013)

    Google Scholar 

  11. Kadhim, N., Mourshed, M., Bray, M.: Automatic extraction of urban structures based on shadow information from satellite imagery. In: 14th Conference of International Building Performance Simulation, pp. 2607–2614 (2015)

    Google Scholar 

  12. Cerra, D., Plank, S., Lysandrou, V., Tian, J.: Cultural heritage sites in danger-towards automatic damage detection from space. Remote Sens. 8(781), 1–15 (2016)

    Google Scholar 

  13. Zhou, K., Gorte, B.: Shadow detection from VHR aerial images in urban area by using 3D city models and a decision fusion approach. In: ISPRS Annals of the PRSSIS, XLII-2/W7, pp. 579–586 (2017)

    Article  Google Scholar 

  14. Kadhim, N., Mourshed, M.: A shadow-overlapping algorithm for estimating building heights from VHR satellite images. IEEE GRSL 15(1), 8–12 (2018)

    Google Scholar 

  15. Llamas, J., Lerones, P.M., Medina, R., Zalama, E., Gómez-García-Bermejo, J.: Classification of architectural heritage images using deep learning techniques. Appl. Sci. 7(992), 1–25 (2017)

    Google Scholar 

  16. Yasser, A.M., Clawson, K., Bowerman, C., Lévêque, M.: Saving cultural heritage with digital make-believe: machine learning and digital techniques to the rescue. In: Proceedings of British HCI Conference, pp. 1–5 (2017)

    Google Scholar 

  17. Bassier, M., Vergauwen, M., Van Genechten, B.: Automated classification of heritage buildings for as-built BIM using machine learning techniques. In: ISPRS Annals of the PRSSIS, IV-2/W2, pp. 25–30 (2017)

    Article  Google Scholar 

  18. Uhl, J., Leyk, S., Chiang, Y., Duan, W., Knoblock, C.: Exploring the potential of deep learning for settlement symbol extraction from historical map documents. In: UCGIS (2018)

    Google Scholar 

  19. Cheng, G., Han, J.: A survey on object detection in optical remote sensing images. ISPRS J. Photogramm. Remote Sens. 117, 11–28 (2016)

    Article  Google Scholar 

  20. Bhatia, N., Vandana: Survey of nearest neighbor techniques. Int. J. Comput. Sci. Inf. Secur. 8(2), 302–305 (2010)

    Google Scholar 

  21. Rokach, L., Schclar, A., Itach, E.: Ensemble methods for multi-label classification. Expert Syst. Appl. 41(16), 7507–7523 (2014)

    Article  Google Scholar 

  22. Farid, D.M., Zhang, L., Rahman, C.M., Hossain, M.A., Strachan, R.: Hybrid decision tree and naïve Bayes classifiers for multi-class classification tasks. Expert Syst. Appl. 41(4), 1937–1946 (2014)

    Article  Google Scholar 

  23. Zhuang, F., et al.: Mining distinction and commonality across multiple domains using generative model for text classification. IEEE TKDE 24(11), 2025–2039 (2012)

    Google Scholar 

  24. Belgiu, M., Drăguţ, L.: Random forest in remote sensing: a review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 114, 24–31 (2016)

    Article  Google Scholar 

  25. Abe, S.: Support Vector Machines for Pattern Classification. Advances in Computer Vision and Pattern Recognition. Springer, London (2010). https://doi.org/10.1007/978-1-84996-098-4

    Book  MATH  Google Scholar 

  26. Protopapadakis, E., et al.: A genetically optimized neural classifier applied to numerical pile integrity tests considering concrete piles. Comput. Struct. 162, 68–79 (2016)

    Article  Google Scholar 

  27. Remondino, F., Spera, M.G., Nocerino, E., Menna, F., Nex., F., Barsanti, S.G.: Dense image matching: comparisons and analyses. In: Proceedings of Digital Heritage International Congress, pp. 47–54 (2013)

    Google Scholar 

  28. Rovithis, Ε., et al.: LiDAR-aided urban-scale assessment of soil-structure interaction effects: the case of Kalochori residential area (N. Greece). Bull. Earthq. Eng. 15(11), 4821–4850 (2017)

    Article  Google Scholar 

  29. Singh, K.K., Pal, K., Nigam, M.J.: Shadow detection and removal from remote sensing images using NDI and morphological operators. Int. J. Comput. Appl. 42(10), 37–40 (2012)

    Google Scholar 

  30. Rottensteiner, F., Sohn, G., Gerke, M., Wegner, J.D.: ISPRS test project on urban classification and 3D building reconstruction, ISPRS—Commission III—Photogrammetric Computer Vision and Image Analysis Working Group III/4–3D Scene Analysis (2013)

    Google Scholar 

  31. Cramer, M.: The DGPF test on digital aerial camera evaluation – overview and test design. Photogrammetrie – Fernerkundung – Geoinformation 2, 73–82 (2010). http://www.ifp.uni-stuttgart.de/dgpf/DKEP-Allg.html

    Article  Google Scholar 

  32. Rutzinger, M., Rottensteiner, F., Pfeifer, N.: A comparison of evaluation techniques for building extraction from airborne laser scanning. IEEE J-STARS 2(1), 11–20 (2009)

    Google Scholar 

Download references

Acknowledgments

This research is supported by the European Funded Project of H2020, Terpsichore, under agreement no. 691218.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evangelos Maltezos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Maltezos, E., Protopapadakis, E., Doulamis, N., Doulamis, A., Ioannidis, C. (2018). Understanding Historical Cityscapes from Aerial Imagery Through Machine Learning. In: Ioannides, M., et al. Digital Heritage. Progress in Cultural Heritage: Documentation, Preservation, and Protection. EuroMed 2018. Lecture Notes in Computer Science(), vol 11196. Springer, Cham. https://doi.org/10.1007/978-3-030-01762-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01762-0_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01761-3

  • Online ISBN: 978-3-030-01762-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics