iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-030-00825-3_23
Novel Data Processing Approach for Deriving Blood Pressure from ECG Only | SpringerLink
Skip to main content

Novel Data Processing Approach for Deriving Blood Pressure from ECG Only

  • Conference paper
  • First Online:
ICT Innovations 2018. Engineering and Life Sciences (ICT 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 940))

Included in the following conference series:

  • 804 Accesses

Abstract

Blood pressure is one of the most valuable vital signs. Recently, the use of bio-sensors has expanded, however, the blood pressure estimation still requires additional devices. We proposed a method based on complexity analysis and machine learning techniques for blood pressure estimation using only ECG signals. Using ECG recordings from 51 different subjects by using three commercial bio-sensors and clinical equipment, we evaluated the proposed methodology by using leave-one-subject-out evaluation. The method achieves mean absolute error (MAE) of 8.2 mmHg for SBP, 8.7 mmHg for DBP and 7.9 mmHg for the MAP prediction. When models are calibrated using person-specific labelled data, the MAE decreases to 7.1 mmHg for SBP, 6.3 mmHg for DBP and 5.4 mmHg for MAP. The experimental results indicate that when a person-specific calibration data is used, the proposed method can achieve results close to a certified medical device for BP estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Blood pressure databases. http://www.webcitation.org/6ulZxAGP8

  2. Ahonen, L., Cowley, B., Torniainen, J., Ukkonen, A., Vihavainen, A., Puolamäki, K.: Cognitive collaboration found in cardiac physiology: study in classroom environment. PloS One 11(7), e0159178 (2016)

    Article  Google Scholar 

  3. Bereksi-Reguig, M.A., Bereksi-Reguig, F., Ali, A.N.: A new system for measurement of the pulse transit time, the pulse wave velocity and its analysis. J. Mech. Med. Biol. 17(01), 1750010 (2017)

    Article  Google Scholar 

  4. Bittium Biosignals: Emotion faros (2016). http://www.megaemg.com/products/faros/

  5. Cliff, D.P., et al.: The preschool activity, technology, health, adiposity, behaviour and cognition (PATH-ABC) cohort study: rationale and design. BMC Pediatr. 17(1), 95 (2017)

    Article  Google Scholar 

  6. Ding, H., Sarela, A., Helmer, R., Mestrovic, M., Karunanithi, M.: Evaluation of ambulatory ECG sensors for a clinical trial on outpatient cardiac rehabilitation. In: 2010 IEEE/ICME International Conference on Complex Medical Engineering (CME), pp. 240–243. IEEE (2010)

    Google Scholar 

  7. Gjoreski, M., Gjoreski, H., Luštrek, M., Gams, M.: How accurately can your wrist device recognize daily activities and detect falls? Sensors 16(6), 800 (2016)

    Article  Google Scholar 

  8. Gjoreski, M., Luštrek, M., Gams, M., Gjoreski, H.: Monitoring stress with a wrist device using context. J. Biomed. Inform. 73, 159–170 (2017)

    Article  Google Scholar 

  9. Goldberger, A.L., et al.: Physiobank, physiotoolkit, and physionet. Circulation 101(23), e215–e220 (2000)

    Article  Google Scholar 

  10. Hacks., C.: e-Health sensor platform V2.0 for Arduino and Raspberry Pi. https://www.cooking-hacks.com/documentation/tutorials/ehealth-biometric-sensor-platform-arduino-raspberry-pi-medical

  11. Hailstone, J., Kilding, A.E.: Reliability and validity of the zephyr™ bioharness™ to measure respiratory responses to exercise. Meas. Phys. Educ. Exerc. Sci. 15(4), 293–300 (2011)

    Article  Google Scholar 

  12. Hsiu, H., Hsu, C.L., Wu, T.L.: A preliminary study on the correlation of frequency components between finger PPG and radial arterial BP waveforms. In: International Conference on Biomedical and Pharmaceutical Engineering, ICBPE 2009, pp. 1–4. IEEE (2009)

    Google Scholar 

  13. Ilango, S., Sridhar, P.: A non-invasive blood pressure measurement using android smart phones. IOSR J. Dent. Med. Sci. 13(1), 28–31 (2014)

    Article  Google Scholar 

  14. Johnstone, J.A., Ford, P.A., Hughes, G., Watson, T., Garrett, A.T.: Bioharness™ multivariable monitoring device: part. i: validity. J. Sport. Sci. Med. 11(3), 400 (2012)

    Google Scholar 

  15. Johnstone, J.A., Ford, P.A., Hughes, G., Watson, T., Mitchell, A.C., Garrett, A.T.: Field based reliability and validity of the bioharness™ multivariable monitoring device. J. Sport. Sci. Med. 11(4), 643 (2012)

    Google Scholar 

  16. Jones, D.W., Hall, J.E.: The national high blood pressure education program (2002)

    Google Scholar 

  17. Kim, N., et al.: Trending autoregulatory indices during treatment for traumatic brain injury. J. Clin. Monit. Comput. 30(6), 821–831 (2016)

    Article  Google Scholar 

  18. Miettinen, T., et al.: Success rate and technical quality of home polysomnography with self-applicable electrode set in subjects with possible sleep Bruxism. IEEE J. Biomed. Health Inform. (2017)

    Google Scholar 

  19. Mitchell, G.F.: Arterial stiffness and hypertension. Hypertension 64(1), 13–18 (2014)

    Article  Google Scholar 

  20. Morales, J.M., Díaz-Piedra, C., Di Stasi, L.L., Martínez-Cañada, P., Romero, S.: Low-cost remote monitoring of biomedical signals. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Toledo-Moreo, F.J., Adeli, H. (eds.) IWINAC 2015. LNCS, vol. 9107, pp. 288–295. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18914-7_30

    Chapter  Google Scholar 

  21. Nitzan, M.: Automatic noninvasive measurement of arterial blood pressure. IEEE Instrum. Meas. Mag. 14(1) (2011)

    Google Scholar 

  22. Rosendorff, C., et al.: Treatment of hypertension in patients with coronary artery disease. Hypertension 65(6), 1372–1407 (2015)

    Article  Google Scholar 

  23. Sahoo, A., Manimegalai, P., Thanushkodi, K.: Wavelet based pulse rate and blood pressure estimation system from ECG and PPG signals. In: 2011 International Conference on Computer, Communication and Electrical Technology (ICCCET), pp. 285–289. IEEE (2011)

    Google Scholar 

  24. Simjanoska, M., Gjoreski, M., Gams, M., Madevska Bogdanova, A.: Non-invasive blood pressure estimation from ECG using machine learning techniques. Sensors 18(4), 1160 (2018)

    Article  Google Scholar 

  25. Zephyr Technology: Zephyr BioHarness 3.0 user manual (2017). https://www.zephyranywhere.com/media/download/bioharness3-user-manual.pdf

  26. Thomas, S.S., Nathan, V., Zong, C., Soundarapandian, K., Shi, X., Jafari, R.: BioWatch: a noninvasive wrist-based blood pressure monitor that incorporates training techniques for posture and subject variability. IEEE J. Biomed. Health Inform. 20(5), 1291–1300 (2016)

    Article  Google Scholar 

  27. Winderbank-Scott, P., Barnaghi, P.: A non-invasive wireless monitoring device for children and infants in pre-hospital and acute hospital environments (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Simjanoska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Simjanoska, M., Gjoreski, M., Gams, M., Bogdanova, A.M. (2018). Novel Data Processing Approach for Deriving Blood Pressure from ECG Only. In: Kalajdziski, S., Ackovska, N. (eds) ICT Innovations 2018. Engineering and Life Sciences. ICT 2018. Communications in Computer and Information Science, vol 940. Springer, Cham. https://doi.org/10.1007/978-3-030-00825-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00825-3_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00824-6

  • Online ISBN: 978-3-030-00825-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics