iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-030-00244-2_11
Adaptive Learning for Learn-Based Regression Testing | SpringerLink
Skip to main content

Adaptive Learning for Learn-Based Regression Testing

  • Conference paper
  • First Online:
Formal Methods for Industrial Critical Systems (FMICS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 11119))

Abstract

Regression testing is an important activity to prevent the introduction of regressions into software updates. Learn-based testing can be used to automatically check new versions of a system for regressions on a system level. This is done by learning a model of the system and model checking this model for system property violations.

Learning the model of a large system can take an unpractical amount of time however. In this work we investigate if the concept of adaptive learning can improve the learning speed of a model in a regression testing scenario.

We have performed several experiments with this technique on two systems: ToDoMVC and SSH. We find that there can be a large benefit to using adaptive learning. In addition we find three main factors that influence the benefit of adaptive learning. There are however also some shortcomings to adaptive learning that should be investigated further.

D. Huistra, J. Meijer—Supported by STW SUMBAT grant: 13859.

J. van de Pol—Supported by the 3TU.BSR project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://todomvc.com/.

  2. 2.

    https://matt.ucc.asn.au/dropbear/dropbear.html.

References

  1. Zelkowitz, M.V.: Perspectives in software engineering. ACM Comput. Surv. 10(2), 197–216 (1978)

    Article  Google Scholar 

  2. Wong, W.E., Horgan, J.R., et al.: A study of effective regression testing in practice. In: ISSRE, Albuquerque, NM, USA, 2–5 November, pp. 264–274 (1997)

    Google Scholar 

  3. Olan, M.: Unit testing: test early, test often. J. Comput. Sci. Coll. 19(2), 319–328 (2003)

    Google Scholar 

  4. Meinke, K.: Automated black-box testing of functional correctness using function approximation. In: ISSTA, Boston, MA, USA, 11–14 July, pp. 143–153 (2004)

    Google Scholar 

  5. Kant, G., Laarman, A., Meijer, J., van de Pol, J., Blom, S., van Dijk, T.: LTSmin: high-performance language-independent model checking. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 692–707. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0_61

    Chapter  Google Scholar 

  6. Groce, A., Peled, D.A., Yannakakis, M.: Adaptive model checking. Logic J. IGPL 14(5), 729–744 (2006)

    Article  MathSciNet  Google Scholar 

  7. Steffen, B., Howar, F., Merten, M.: Introduction to active automata learning from a practical perspective. In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS, vol. 6659, pp. 256–296. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21455-4_8

    Chapter  Google Scholar 

  8. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput. 75(2), 87–106 (1987)

    Article  MathSciNet  Google Scholar 

  9. Rivest, R.L., Schapire, R.E.: Inference of finite automata using homing sequences. In: Hanson, S.J., Remmele, W., Rivest, R.L. (eds.) Machine Learning: From Theory to Applications. LNCS, vol. 661, pp. 51–73. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-56483-7_22

    Chapter  Google Scholar 

  10. Chow, T.S.: Testing software design modeled by finite-state machines. IEEE Trans. Softw. Eng. 4(3), 178–187 (1978)

    Article  Google Scholar 

  11. Windmüller, S., Neubauer, J., et al.: Active continuous quality control. In: CBSE, Vancouver, BC, Canada, 17–21 June 2013, pp. 111–120 (2013)

    Google Scholar 

  12. Bainczyk, A., Schieweck, A., Steffen, B., Howar, F.: Model-based testing without models: the TodoMVC case study. In: Katoen, J.-P., Langerak, R., Rensink, A. (eds.) ModelEd, TestEd, TrustEd. LNCS, vol. 10500, pp. 125–144. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68270-9_7

    Chapter  Google Scholar 

  13. Fiterau-Brostean, P., et al.: Model learning and model checking of SSH implementations. In: SPIN, Santa Barbara, CA, USA, 10–14 July 2017, pp. 142–151 (2017)

    Google Scholar 

  14. Smetsers, R., Moerman, J., Jansen, D.N.: Minimal separating sequences for all pairs of states. In: Dediu, A.-H., Janoušek, J., Martín-Vide, C., Truthe, B. (eds.) LATA 2016. LNCS, vol. 9618, pp. 181–193. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30000-9_14

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Huistra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huistra, D., Meijer, J., van de Pol, J. (2018). Adaptive Learning for Learn-Based Regression Testing. In: Howar, F., Barnat, J. (eds) Formal Methods for Industrial Critical Systems. FMICS 2018. Lecture Notes in Computer Science(), vol 11119. Springer, Cham. https://doi.org/10.1007/978-3-030-00244-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00244-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00243-5

  • Online ISBN: 978-3-030-00244-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics