Abstract
Regression testing is an important activity to prevent the introduction of regressions into software updates. Learn-based testing can be used to automatically check new versions of a system for regressions on a system level. This is done by learning a model of the system and model checking this model for system property violations.
Learning the model of a large system can take an unpractical amount of time however. In this work we investigate if the concept of adaptive learning can improve the learning speed of a model in a regression testing scenario.
We have performed several experiments with this technique on two systems: ToDoMVC and SSH. We find that there can be a large benefit to using adaptive learning. In addition we find three main factors that influence the benefit of adaptive learning. There are however also some shortcomings to adaptive learning that should be investigated further.
D. Huistra, J. Meijer—Supported by STW SUMBAT grant: 13859.
J. van de Pol—Supported by the 3TU.BSR project.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Zelkowitz, M.V.: Perspectives in software engineering. ACM Comput. Surv. 10(2), 197–216 (1978)
Wong, W.E., Horgan, J.R., et al.: A study of effective regression testing in practice. In: ISSRE, Albuquerque, NM, USA, 2–5 November, pp. 264–274 (1997)
Olan, M.: Unit testing: test early, test often. J. Comput. Sci. Coll. 19(2), 319–328 (2003)
Meinke, K.: Automated black-box testing of functional correctness using function approximation. In: ISSTA, Boston, MA, USA, 11–14 July, pp. 143–153 (2004)
Kant, G., Laarman, A., Meijer, J., van de Pol, J., Blom, S., van Dijk, T.: LTSmin: high-performance language-independent model checking. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 692–707. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0_61
Groce, A., Peled, D.A., Yannakakis, M.: Adaptive model checking. Logic J. IGPL 14(5), 729–744 (2006)
Steffen, B., Howar, F., Merten, M.: Introduction to active automata learning from a practical perspective. In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS, vol. 6659, pp. 256–296. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21455-4_8
Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput. 75(2), 87–106 (1987)
Rivest, R.L., Schapire, R.E.: Inference of finite automata using homing sequences. In: Hanson, S.J., Remmele, W., Rivest, R.L. (eds.) Machine Learning: From Theory to Applications. LNCS, vol. 661, pp. 51–73. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-56483-7_22
Chow, T.S.: Testing software design modeled by finite-state machines. IEEE Trans. Softw. Eng. 4(3), 178–187 (1978)
Windmüller, S., Neubauer, J., et al.: Active continuous quality control. In: CBSE, Vancouver, BC, Canada, 17–21 June 2013, pp. 111–120 (2013)
Bainczyk, A., Schieweck, A., Steffen, B., Howar, F.: Model-based testing without models: the TodoMVC case study. In: Katoen, J.-P., Langerak, R., Rensink, A. (eds.) ModelEd, TestEd, TrustEd. LNCS, vol. 10500, pp. 125–144. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68270-9_7
Fiterau-Brostean, P., et al.: Model learning and model checking of SSH implementations. In: SPIN, Santa Barbara, CA, USA, 10–14 July 2017, pp. 142–151 (2017)
Smetsers, R., Moerman, J., Jansen, D.N.: Minimal separating sequences for all pairs of states. In: Dediu, A.-H., JanouÅ¡ek, J., MartÃn-Vide, C., Truthe, B. (eds.) LATA 2016. LNCS, vol. 9618, pp. 181–193. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30000-9_14
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Huistra, D., Meijer, J., van de Pol, J. (2018). Adaptive Learning for Learn-Based Regression Testing. In: Howar, F., Barnat, J. (eds) Formal Methods for Industrial Critical Systems. FMICS 2018. Lecture Notes in Computer Science(), vol 11119. Springer, Cham. https://doi.org/10.1007/978-3-030-00244-2_11
Download citation
DOI: https://doi.org/10.1007/978-3-030-00244-2_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-00243-5
Online ISBN: 978-3-030-00244-2
eBook Packages: Computer ScienceComputer Science (R0)