iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-1-84800-155-8_3
Electrical and Mechanical Passive Network Synthesis | SpringerLink
Skip to main content

Electrical and Mechanical Passive Network Synthesis

  • Conference paper
Recent Advances in Learning and Control

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 371))

Abstract

The context of this paper is the application of electrical circuit synthesis to problems of mechanical control. The use of the electrical-mechanical analogy and the inerter mechanical element is briefly reviewed. Classical results from passive network synthesis are surveyed including Brune’s synthesis, Bott-Duffin’s procedure, Darlington’s synthesis, minimum reactance extraction and the synthesis of biquadratic functions. New results are presented on the synthesis of biquadratic functions which are realisable using two reactive elements and no transformers.

This research was partially supported by the Office of Naval Research under Grant N00014-02-1-0011, N00014-05-1-0186, and by the National Science Foundation under Grants ECS-0122412 and INT-0128656. The first author also acknowledges the support of the Faculty Startup Grant at the University of Maryland.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Anderson, B.D.O., Vongpanitlerd, S.: Network Analysis and Synthesis: A Modern Systems Theory Approach. Prentice Hall, Englewood Cliffs (1973)

    Google Scholar 

  2. Auth, L.V.: Synthesis of a Subclass of Biquadratic Immittance Functions, PhD thesis, University of Illinois, Urbana, 111. (1962)

    Google Scholar 

  3. Auth, L.V.: RLC Biquadratic Driving-Point Synthesis using the Resistive Threeport. IEEE Trans. on Circuit Theory, 82–88 (1964)

    Google Scholar 

  4. Baher, H.: Synthesis of Electrical Networks. Wiley, Chichester (1984)

    Google Scholar 

  5. Balabanian, N.: Network Synthesis. Prentice-Hall, Englewood Cliffs (1958)

    Google Scholar 

  6. Belevitch, V.: Summary of the history of circuit theory. Proc. IRE 50(5), 848–855 (1962)

    Article  Google Scholar 

  7. Bott, R., Duffin, R.J.: Impedance synthesis without use of transformers. J. Appl. Phys. 20, 816 (1949)

    Article  MathSciNet  Google Scholar 

  8. Brune, O.: Synthesis of a Finite Two-terminal Network Whose Driving-Point Impedance is a Prescribed Function of Frequency. J. Math. Phys. 10, 191–236 (1931)

    Google Scholar 

  9. Cauer, W.: Die Verwirklichung von Wechselstrom-Widerstanden Vorgescriebener Frequenzabhängigkeit. Arch. Elektrotech. 17, 355 (1926)

    Article  Google Scholar 

  10. Cauer, W.: Synthesis of Linear Communication Networks. McGraw-Hill, New York(1958)

    MATH  Google Scholar 

  11. Cederbaum, I.: Conditions for the impedance and admittance matrices of n-ports without ideal transformers. Proc. IEE 105, 245–251 (1958)

    Google Scholar 

  12. Cederbaum, I.: Topological considerations in the realization of resistive n-port networks. IRE Trans, on Circuit Theory CT-8(3), 324–329 (1961)

    MathSciNet  Google Scholar 

  13. Chen, M.Z.Q., Smith, M.C.: Mechanical networks comprising one damper and one inerter, Technical Report, CUED/F-INFENG/TR.569, Cambridge University Engineering Department, England (December 2006)

    Google Scholar 

  14. Chen, M.Z.Q., Smith, M.C.: Mechanical networks comprising one damper and one inerter. In: Proceedings of European Control Conference, Kos, Greece, pp. 4917–4924 (2007)

    Google Scholar 

  15. Chen, M.Z.Q.: Passive Network Synthesis of Restricted Complexity, PhD thesis, University of Cambridge, Cambridge, UK (2007)

    Google Scholar 

  16. Darlington, S.: Synthesis of reactance 4-poles which produce prescribed insertion loss characteristics. J. Math. Phys. 18, 257–353 (1939)

    MathSciNet  Google Scholar 

  17. Darlington, S.: A History of Network Synthesis and Filter Theory for Circuits Composed of Resistors, Inductors, and Capacitors. IEEE Trans, on Circuits and Systems 46(1) (1999)

    Google Scholar 

  18. Dewilde, P., Viera, A.C., Kailath, T.: On a Generalized Szegö-Levinson Realization Algorithm for Optimal Linear Predictors based on a Network Synthesis Approach. IEEE Trans, on Circuits and Systems 25, 663–675 (1978)

    Article  MATH  Google Scholar 

  19. Evangelou, S., Limebeer, D.J.N., Sharp, R.S., Smith, M.C.: Control of motorcycle steering instabilities—passive mechanical compensators incorporating inerters. IEEE Control Systems Magazine, 78–88 (October 2006)

    Google Scholar 

  20. Evangelou, S., Limebeer, D.J.N., Sharp, R.S., Smith, M.C.: Mechanical steering compensation for high-performance motorcycles. Transactions of ASME, J. of Applied Mechanics 74(2), 332–346 (2007)

    MATH  Google Scholar 

  21. Fialkow, A., Gerst, L: Impedance synthesis without mutual coupling. Quart. Appl. Math. 12, 420–422 (1955)

    MATH  MathSciNet  Google Scholar 

  22. Foster, R.M.: A reactance theorem. Bell System Tech. J. 3, 259–267 (1924)

    Google Scholar 

  23. Foster, R.M., Ladenheim, E.L.: A Class of Biquadratic Impedances. IEEE Trans. on Circuit Theory 10(2), 262–265 (1963)

    Google Scholar 

  24. Foster, R.M.: Biquadratic impedances realizable by a generalization of the five-element minimum-resistance bridges. IEEE Trans, on Circuit Theory, 363–367 (1963)

    Google Scholar 

  25. Foster, R.M.: Comment on Minimum Biquadratic Impedances. IEEE Trans. on Circuit Theory, 527 (1963)

    Google Scholar 

  26. Garnett, J.B.: Bounded Analytic Functions. Academic Press, London (1981)

    MATH  Google Scholar 

  27. Guillemin, E.A.: Synthesis of Passive Networks. John Wiley, Chichester (1957)

    Google Scholar 

  28. Newcomb, R.W.: Linear Multiport Synthesis. McGraw-Hill, New York (1966)

    Google Scholar 

  29. Pantell, R.H.: A new method of driving point impedance synthesis. Proc. IRE 42, 861 (1954)

    Google Scholar 

  30. Papageorgiou, C., Smith, M.C.: Positive real synthesis using matrix inequalities for mechanical networks: application to vehicle suspension. IEEE Trans. on Contr. Syst. Tech. 14, 423–435 (2006)

    Article  Google Scholar 

  31. Reza, F.M.: A Bridge Equivalent for a Brune Cycle Terminated in a Resistor. Proc. IRE 42(8), 1321 (1954)

    Google Scholar 

  32. Reza, F.M.: A supplement to the Brune synthesis. AIEE Communication and Electronics 17, 85–90 (1955)

    Google Scholar 

  33. Richards, P.I.: A special class of functions with positive real parts in a half-plane. Duke J. of Math. 14, 777–786 (1947)

    Article  MATH  MathSciNet  Google Scholar 

  34. Seshu, S.: Minimal Realizations of the Biquadratic Minimum Functions. IRE Trans. on Circuit Theory, 345–350 (1959)

    Google Scholar 

  35. Slepian, P., Weinberg, L.: Synthesis applications of paramount and dominant matrices. In: Proc. Nat. Elec. Conf., vol. 14, pp. 611–630 (1958)

    Google Scholar 

  36. Smith, M.C., Walker, G.W.: A mechanical network approach to performance capabilities of passive suspensions. In: Proceedings of the Workshop on Modelling and Control of Mechanical Systems, pp. 103–117. Imperial College Press, Imperial College, London (1997)

    Google Scholar 

  37. Smith, M.C.: Force-controlling mechanical device, patent pending, Intl. App. No. PCT/GB02/03056 (July 4, 2001)

    Google Scholar 

  38. Smith, M.C.: Synthesis of mechanical networks: the inerter. IEEE Trans. Automatic Control 47(10), 1648–1662 (2002)

    Article  Google Scholar 

  39. Smith, M.C., Wang, F-C: Performance benefits in passive vehicle suspensions employing inerters. Vehicle System Dynamics 42, 235–257 (2004)

    Article  Google Scholar 

  40. Storer, J.E.: Relationship between the Bott-Duffin and Pantell Impedance Synthesis. Proc. IRE 42(9), 1451 (1954)

    Google Scholar 

  41. Tellegen, B.D.H.: Théorie der Wisseistromen, P. Noordhoff (1952)

    Google Scholar 

  42. Tow, J.: Comments on On Biquadratic Impedances with two reactive elements. IEEE Trans. on Circuits and Systems 19 (1972)

    Google Scholar 

  43. Van Valkenburg, M.E.: Introduction to Modern Network Synthesis. Wiley, Chichester (1960)

    Google Scholar 

  44. Vasiliu, C.G.: Series-Parallel six-element synthesis of the biquadratic impedances. IEEE Trans. on Circuit Theory, 115–121 (1970)

    Google Scholar 

  45. Vasiliu, C.G.: Four-reactive six-element biquadratic structure. IEEE Trans. on Circuit Theory (1972)

    Google Scholar 

  46. Weinberg, L.: Report on Circuit Theory, Technical Report, XIII URSI Assembly, London, England (September 1960)

    Google Scholar 

  47. Yengst, W.C.: Procedures of Modern Network Synthesis. MacMillan, NYC (1964)

    Google Scholar 

  48. Youla, D.C., Tissi, P.: TV-port synthesis via reactance extraction, part I. IEEE International Convention Record, 183–205 (1966)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, M.Z.Q., Smith, M.C. (2008). Electrical and Mechanical Passive Network Synthesis. In: Blondel, V.D., Boyd, S.P., Kimura, H. (eds) Recent Advances in Learning and Control. Lecture Notes in Control and Information Sciences, vol 371. Springer, London. https://doi.org/10.1007/978-1-84800-155-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-155-8_3

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-154-1

  • Online ISBN: 978-1-84800-155-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics