Abstract
Enabling high-level programming models on grids is today a major challenge. A way to achieve this goal relies on the use of environments able to transparently and automatically provide adequate support for low-level, grid-specific issues (fault-tolerance, scalability, etc.). This paper discusses the above approach when applied to grid data management. As a case study, we propose a 2-tier software architecture that supports transparent, fault-tolerant, grid-level data sharing in the ASSIST programming environment (University of Pisa), based on the JuxMem grid data sharing service (INRIA Rennes).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
The JXTA (juxtapose) project. http://www.jxta.org.
M. Aldinucci, C. Bertolli, S. Campa, M. Coppola, M. Vanneschi, L. Veraldi, and C. Zoccolo. Self-configuring and self-optimizing grid components in the GCM model and their ASSIST implementation. In Proc of. HPC-GECO/Compframe (held in conjunction with HPDC-15), IEEE, pages 45–52, Paris, France, June 2006.
M. Aldinucci, M. Coppola, M. Danelutto, M. Vanneschi, and C. Zoccolo. ASSIST as a research framework for high-performance grid programming environments. In J. C. Cunha and O. F. Rana, editors, Grid Computing: Software environments and Tools, chapter 10, pages 230–256. Springer, Jan. 2006.
M. Aldinucci and M. Torquati. Accelerating apache farms through ad-HOC distributed scalable object repository. In M. Danelutto, M. Vanneschi, and D. Laforenza, editors, Proc. of 10th Intl. Euro-Par 2004 Parallel Processing, volume 3149 of LNCS, pages 596–605. Springer, Aug. 2004.
B. Allcock, J. Bester, J. Bresnahan, A. L. Chervenak, C. Kesselman, S. Meder, V. Nefedova, D. Quesnel, S. Tuecke, and I. Foster. Secure, Efficient Data Transport and Replica Management for High-Performance Data-Intensive Computing. In Proc. of the 18th IEEE Symposium on Mass Storage Systems (MSS 2001), Large Scale Storage in the Web, page 13, Washington, DC, USA, 2001. IEEE Computer Society.
G. Antoniu, L. Bougé, and M. Jan. JuxMem: An adaptive supportive platform for data sharing on the grid. Scalable Computing: Practice and Experience, 6(3):45–55, Sept. 2005.
G. Antoniu, J.-F. Deverge, and S. Monnet. How to bring together fault tolerance and data consistency to enable grid data sharing. Concurrency and Computation: Practice and Experience, 2006. To appear.
F. Baude, D. Caromel, and M. Morel. On hierarchical, parallel and distributed components for grid programming. In V. Getov and T. Kielmann, editors, Proc. of the Intl. Workshop on Component Models and Systems for Grid Applications, CoreGRID series, pages 97–108, Saint-Malo, France, Jan. 2005. Springer Verlag.
M. Cole. Bringing skeletons out of the closet: A pragmatic manifesto for skeletal parallel programming. Parallel Computing, 30(3):389–406, 2004.
CoreGRID NoE deliverable series, Institute on Programming Model. Deliverable D.PM.02 - Proposals for a Grid Component Model, Nov. 2005.
J. Dünnweber and S. Gorlatch. HOC-SA: A grid service architecture for higher-order components. In IEEE International Conference on Services Computing, Shanghai, China, pages 288–294. IEEE Computer Society Press, Sept. 2004.
G. Kola and M. Livny. Diskrouter: A Flexible Infrastructure for High Performance Large Scale Data Transfers. Technical Report CS-TR-2003-1484, University of Wisconsin-Madison Computer Sciences Department, Madison, WI, USA, 2003.
E. Laure, H. Stockinger, and K. Stockinger. Performance engineering in data Grids. Concurrency & Computation: Practice & Experience, 17(2–4):171–191, 2005.
S. Vadhiyar and J. Dongarra. Self adaptability in grid computing. Concurrency & Computation: Practice & Experience, 17(2–4):235–257, 2005.
R. V. van Nieuwpoort, T. Kielmann, and H. E. Bal. Efficient load balancing for wide-area divide-and-conquer applications. In PPoPP ’01: Proc. of the 8th ACM SIGPLAN symposium on Principles and practices of parallel programming, pages 34–43, New York, NY, USA, 2001. ACM Press.
R. V. van Nieuwpoort, J. Maassen, G. Wrzesinska, R. Hofman, C. Jacobs, T. Kielmann, and H. E. Bal. Ibis: a flexible and efficient Java-based grid programming environment. Concurrency & Computation: Practice & Experience, 17(7-8):1079–1107, 2005.
M. Vanneschi. The programming model of ASSIST, an environment for parallel and distributed portable applications. Parallel Computing, 28(12):1709–1732, Dec. 2002.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer Science+Business Media, LLC
About this chapter
Cite this chapter
Aldinucci, M., Danelutto, M., Antoniu, G., Jan, M. (2008). Fault-Tolerant Data Sharing for High-level Grid: A Hierarchical Storage Architecture. In: Gorlatch, S., Bubak, M., Priol, T. (eds) Achievements in European Research on Grid Systems. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-72812-4_6
Download citation
DOI: https://doi.org/10.1007/978-0-387-72812-4_6
Publisher Name: Springer, Boston, MA
Print ISBN: 978-0-387-72811-7
Online ISBN: 978-0-387-72812-4
eBook Packages: Computer ScienceComputer Science (R0)