iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/3-540-69342-4_9
Shape Nouns and Shape Concepts: A Geometry for ‘Corner’ | SpringerLink
Skip to main content

Shape Nouns and Shape Concepts: A Geometry for ‘Corner’

  • Chapter
  • First Online:
Spatial Cognition

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1404))

  • 2287 Accesses

Abstract

This paper investigates geometric and ontological aspects of shape concepts underlying the semantics of nouns. Considering the German shape nouns Ecke and Knick (corner and kink) we offer a geometric framework to characterize substantial aspects of shape based on features of the object’s boundary. Using the axiomatic method, we develop a geometric system, called ‘planar shape geometry’, enriching the basic inventory of ordering geometry by shape curves. The geometric characterization is not sufficient to decide which are the referents of the nouns Ecke and Knick among the entities involved in the spatial constellation. Different tests using the German topological prepositions in and an (in and at) are employed to bring forth this decision for the case of Ecke. Since these tests do not give uniform evidence in favor of one solution, we have to conclude that Ecke is flexible in selecting the referent and the characterizations discussed reflect its meaning spectrum.

The research reported in this paper has been supported by the Deutsche Forschungsgemeinschaft (DFG) in the project ‘Axiomatik räumlicher Konzepte’ (Ha 1237/7). We are indebted to Christie Manning, Bernhard Nebel, Esther Rinke, Christoph Schlieder, Hedda Rahel Schmidtke, Mark Siebel, and Heike Tappe for their helpful comments. This paper also benefits from the fruitful discussions in the Hamburg Working Group on Spatial Cognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Biederman, I. (1987). Recognition-by-components: A theory of human image understanding. Psychological Review, 94, 115–147.

    Article  Google Scholar 

  • Biederman, I. (1995). Visual object recognition. In S.M. Kosslyn & D.N. Osherson (eds.), Visual Cognition—An Invitation to Cognitive Science (2nd ed.) Vol. 2. (pp. 121–165). Cambridge, MA: MIT.

    Google Scholar 

  • Bierwisch, M. (1983). Semantische und konzeptuelle Repräsentation lexikalischer Einheiten. In W. Motsch & R. Ruzicka (eds.), Untersuchungen zur Semantik. (pp. 61–99). Berlin: Akademie-Verlag.

    Google Scholar 

  • Bierwisch, M. (1988). On the grammar of local prepositions. In M. Bierwisch, W. Motsch & I. Zimmermann (eds.), Syntax, Semantik und Lexikon. (pp. 1–63). Berlin: Akademie-Verlag.

    Google Scholar 

  • Bierwisch, M. (1996). How much space gets into language? In P. Bloom, M.A. Peterson, L. Nadel & M.F. Garrett (eds.), (pp. 31–76).

    Google Scholar 

  • Bierwisch, M. & Lang, E. (1989). Somewhat longer—much deeper—further and further. In M. Bierwisch & E. Lang (eds.), Dimensional Adjectives: Grammatical Structure and Conceptual Interpretation. (pp. 471–514). Berlin, Heidelberg, New York: Springer.

    Google Scholar 

  • Buschbeck-Wolff, B. (1994). Konzeptuelle Interpretation und interlinguabasierte Übersetzung räumlicher Präpositionen (Working Papers of the Institute for Logic and Linguistics, IBM TR-80.95-015). Stuttgart: IBM.

    Google Scholar 

  • Bloom, P., Peterson, M.A., Nadel, L. & Garrett, M.F. (eds.) (1996). Language and Space. Cambridge, MA: MIT.

    Google Scholar 

  • Eilan, N., McCarthy, R. & Brewer, B. (eds.) (1993). Spatial Representations. Oxford: Blackwell.

    Google Scholar 

  • Eisenkolb, A., Musto, A., Schill, K. Hernández, D. & Brauer, W. (1998). Representational Levels for the Perception of the Courses of Motion. This volume.

    Google Scholar 

  • Eschenbach, C. & Kulik, L. (1997). An axiomatic approach to the spatial relations underlying left-right and in front of-behind. In G. Brewka, C. Habel & B. Nebel (eds.), KI-97—Advances in Artificial Intelligence. (pp. 207–218). Berlin: Springer.

    Google Scholar 

  • Habel, Ch. (1990). Propositional and depictorial representations of spatial knowledge: The case of path concepts. In R. Studer (ed.), Natural Language and Logic. (pp. 94–117). Berlin: Springer.

    Google Scholar 

  • Habel, Ch. & Eschenbach, C. (1997). Abstract structures in spatial cognition. In C. Freksa, M. Jantzen & R. Valk (eds.), Foundations of Computer Science. Potential-Theory-Cognition. (pp. 369–378). Berlin: Springer.

    Google Scholar 

  • Henkin, L., Suppes, P. & Tarski, A. (eds.) (1959): The Axiomatic Method, with Special Reference to Geometry and Physics. Amsterdam: North-Holland.

    MATH  Google Scholar 

  • Herskovits, A. (1986). Language and Spatial Cognition. Cambridge, Eng.: Cambridge University Press.

    Google Scholar 

  • Herweg, M. (1989). Ansätze zu einer semantischen Beschreibung topologischer Präpositionen. In Ch. Habel, M. Herweg & K. Rehkämper (eds.), Raumkonzepte in Verstehensprozessen. (pp. 99–127). Tübingen: Niemeyer.

    Google Scholar 

  • Hilbert, D. (1899). Grundlagen der Geometrie. (8th ed. (1956), with revisions and additions by Paul Bernays.) Stuttgart: Teubner.

    Google Scholar 

  • Hoffman, D.D. & Richards, W.A. (1984). Parts of recognition. Cognition, 18, 65–97.

    Article  Google Scholar 

  • Hoffman, D.D. & Singh, M. (1997). Salience of visual parts. Cognition, 63, 29–78.

    Article  Google Scholar 

  • Huntington, E.V. (1924). A new set of postulates for betweenness, with proof of complete independence. Transactions of the American Mathematical Society, 26, 257–282.

    Article  MATH  MathSciNet  Google Scholar 

  • Jackendoff, R. (1991). Parts and boundaries. Cognition, 41, 9–45.

    Article  Google Scholar 

  • Jackendoff, R. (1996). The architecture of the linguistic-spatial interface. In P. Bloom, M.A. Peterson, L. Nadel & M.F. Garrett (eds.), (pp. 1–30).

    Google Scholar 

  • Klein, W. (1991). Raumausdrücke. Linguistische Berichte, 132, 77–114.

    Google Scholar 

  • Kline, M. (1972). Mathematical Thought—From Ancient to Modern Times. New York: Oxford University Press.

    MATH  Google Scholar 

  • Knauff, M., Rauh, R., Schlieder, Ch.. & Strube, G. (1998). Mental Models in Spatial Reasoning. This volume.

    Google Scholar 

  • Laguna, T. de (1922). Point, line and surface, as sets of solids. The Journal of Philosophy, 19, 449–461.

    Article  Google Scholar 

  • Landau, B. & Jackendoff, R. (1993). “What” and “where” in spatial language and spatial cognition. Behavioral and Brain Sciences, 16, 217–238.

    Article  Google Scholar 

  • Landau, B., Leyton, M., Lynch, E. & Moore, C. (1992). Rigidity, malleability, object kind, and object naming. Paper presented at the Psychonomics Society, St. Louis, MO.

    Google Scholar 

  • Landau, B., Smith, L., & Jones, S. (1988). The importance of shape in early lexical learning. Cognitive Development, 3, 299–321.

    Article  Google Scholar 

  • Lang, E. (1989). The semantics of dimensional designation of spatial objects. In M. Bierwisch & E. Lang (eds.), Dimensional Adjectives: Grammatical Structure and Conceptual Interpretation. (pp. 263–417). Berlin, Heidelberg, New York: Springer.

    Google Scholar 

  • Luce, R.D., Krantz, D.H., Suppes, P. & Tversky, A. (1990). Foundations of Measurement. Vol. III. Representation, Axiomatization and Invariance. San Diego, CA: Academic Press.

    MATH  Google Scholar 

  • Mandler, J. M. (1996). Preverbal representation and language. In P. Bloom, M.A. Peterson, L. Nadel & M.F. Garrett (eds.), (pp. 365–384).

    Google Scholar 

  • Marr, D. & Nishihara, H.K. (1978). Representation and recognition of the spatial organization of three-dimensional shape. In Proc. of the Royal Society, Series B, 200. (pp. 269–294).

    Article  Google Scholar 

  • Miller, G.A. (1978). Semantic relations among words. In M. Halle, J. Bresnan & G. Miller (eds.), Linguistic Theory and Psychological Reality. (pp. 60–117). Cam., MA: MIT.

    Google Scholar 

  • Miller, G.A. & Johnson-Laird, P. (1976). Language and Perception. Cam., MA: Belknap.

    Google Scholar 

  • Parchomenko, A.S. (1957). Was ist eine Kurve? Berlin: Deutscher Verlag der Wissenschaften.

    Google Scholar 

  • Peterson, M.A., Nadel, L., Bloom, P. & M.F. Garrett (1996). Space and language. In P. Bloom, M.A. Peterson, L. Nadel & M.F. Garrett (eds.), (pp. 553–577).

    Google Scholar 

  • Pinkal, M. (1985). Logik und Lexikon: Die Semantik des Unbestimmten. Berlin: de Gruyter.

    Google Scholar 

  • Pinker, S. (1984). Visual cognition: An introduction. Cognition, 18, 1–63.

    Article  Google Scholar 

  • Pribbenow, S. (1993). Räumliche Konzepte in Wissens-und Sprachverarbeitung—Hybride Verarbeitung von Lokalisierung. Wiesbaden: Deutscher Universitäts-Verlag.

    Google Scholar 

  • Renz, J. & Nebel, B. (1998). Spatial Reasoning with Topological Information. This Volume.

    Google Scholar 

  • Rosch, E., Mervis, C., Gray, W., Johnson, D. & Boyes Braem, P. (1976). Basic objects in natural categories. Cognitive Psychology, 8, 382–439.

    Article  Google Scholar 

  • Smith, E.E. (1995). Concepts and categorization. In E.E. Smith & D.H. Osherson (eds.), Thinking. An Invitation to Cognitive Science (2nd ed.) Vol. 3. (pp. 3–33). Cambridge, MA: MIT.

    Google Scholar 

  • Vieu, L. (1993). A logical framework for reasoning about space. In A.U. Frank & I. Campari (eds.), Spatial Information Theory. A Theoretical Basis for GIS. (pp. 25–35). Berlin: Springer.

    Google Scholar 

  • Wunderlich, D. & Herweg, M. (1991). Lokale und Direktionale. In A. von Stechow & D. Wunderlich (eds.), Semantik. (pp. 758–785). Berlin, New York: de Gruyter.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Eschenbach, C., Habel, C., Kulik, L., Leßmöllmann, A. (1998). Shape Nouns and Shape Concepts: A Geometry for ‘Corner’. In: Freksa, C., Habel, C., Wender, K.F. (eds) Spatial Cognition. Lecture Notes in Computer Science(), vol 1404. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-69342-4_9

Download citation

  • DOI: https://doi.org/10.1007/3-540-69342-4_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64603-7

  • Online ISBN: 978-3-540-69342-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics