iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/3-540-63246-8_20
Rewriting rules for synchronization languages | SpringerLink
Skip to main content

Rewriting rules for synchronization languages

  • Formal Language Theory
  • Chapter
  • First Online:
Structures in Logic and Computer Science

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1261))

Abstract

We study rewriting rules characterizing closure properties of synchronization languages. We introduce an extension of the syntactic definition of synchronization expressions, and an appropriate modification of their semantics. The extended definition has the advantage that it allows us to eliminate the less well motivated rewriting rules from the system under which the synchronization languages are closed. The modified system is shown to preserve regularity of the languages. We obtain a characterization of finite synchronization languages as the family consisting of languages satisfying the start-termination property and closed under three types of simple rewriting rules.

Research supported by the the Academy of Finland Grant 14018.

Research supported by the Natural Sciences and Engineering Research Council of Canada Grant OGP0041630.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aalbersberg, I.J., Rozenberg, G.: Theory of traces. Theoret. Comput. Sci. 60 (1988) 1–82

    Google Scholar 

  2. Baeten, J.C.M., Weijland, W.P.: Process algebra. Cambridge University Press, Cambridge, 1990

    Google Scholar 

  3. Book, R.V., Otto, F.: String-rewriting systems. Texts and Monographs in Computer Science, Springer-Verlag, 1993

    Google Scholar 

  4. Bracho, F., Droste, M., Kuske, D.: Representations of computations in concurrent automata by dependence orders. Theoret. Comput. Sci. 174 (1997) 67–96

    Google Scholar 

  5. Clerbout, M., Latteux, M., Roos, Y.: Semi-commutations. In: The Book of Traces. (V. Diekert, G. Rozenberg, eds.) Chapter 12, pp. 487–552, World Scientific, Singapore, 1995

    Google Scholar 

  6. Clerbout, M., Roos, Y., Ryl, I.: Synchronization languages. To appear in Proc. of the 8th International Conference on Automata and Formal Languages, Salgótarján, Hungary, July 1996

    Google Scholar 

  7. De Nicola, R., Segala, R.: A process algebraic view of input/output automata. Theoret. Comput. Sci. 138 (1995) 391–423

    Google Scholar 

  8. Diekert, V., Gastin, P., Petit, A.: Rational and recognizable complex trace languages. Inform. Computation 116 (1995) 134–153

    Google Scholar 

  9. Droste, M.: Recognizable languages in concurrency monoids. Theoret. Comput. Sci. 150 (1995) 77–109

    Google Scholar 

  10. Govindarajan, R., Guo, L., Yu, S., Wang, P.: ParC Project: Practical constructs for parallel programming languages. Proc. of the 15th Annual IEEE International Computer Software & Applications Conference, 1991, pp. 183–189

    Google Scholar 

  11. Guo, L.: Synchronization expressions in parallel programming languages. PhD Thesis, University of Western Ontario, 1995

    Google Scholar 

  12. Guo, L., Salomaa, K., Yu, S.: Synchronization expressions and languages. Proc. of the 6th IEEE Symposium on Parallel and Distributed Processing, (Dallas, Texas). IEEE Computer Society Press, 1994, pp. 257–264

    Google Scholar 

  13. Guo, L., Salomaa, K., Yu, S.: On synchronization languages. Fundamenta Inform. 25 (1996) 423–436

    Google Scholar 

  14. Hennessy, M.: Algebraic theory of processes. The MIT Press, Cambridge, Mass., 1989

    Google Scholar 

  15. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Reading, MA, 1979

    Google Scholar 

  16. Mateescu, A.: On (left) partial shuffle. In: Results and Trends in Theoretical Computer Science. Lect. Notes in Comput. Sci. 812 (1994) 264–278

    Google Scholar 

  17. Mateescu, A., Rozenberg, G., Salomaa, A.: Shuffle on trajectories: Syntactic constraints. Turku Centre for Computer Science, TUCS Technical Report No 41, September 1996

    Google Scholar 

  18. Nielsen, M., Winskel, G.: Petri nets and bisimulation. Theoret. Comput. Sci. 153 (1995) 211–244

    Google Scholar 

  19. Salomaa, A.: Formal Languages. Academic Press, New York, 1973

    Google Scholar 

  20. Sassone, V., Nielsen, M., Winskel, G.: Models of concurrency: Towards a classification. Theoret. Comput. Sci. 170 (1996) 297–348

    Google Scholar 

  21. Yu, S.: Regular languages. In: Handbook of Formal Languages, Vol. I. (G. Rozenberg, A. Salomaa, eds.) pp. 41–110, Springer-Verlag, 1997

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jan Mycielski Grzegorz Rozenberg Arto Salomaa

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Salomaa, K., Yu, S. (1997). Rewriting rules for synchronization languages. In: Mycielski, J., Rozenberg, G., Salomaa, A. (eds) Structures in Logic and Computer Science. Lecture Notes in Computer Science, vol 1261. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-63246-8_20

Download citation

  • DOI: https://doi.org/10.1007/3-540-63246-8_20

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63246-7

  • Online ISBN: 978-3-540-69242-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics