iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/3-540-60114-7_7
Variations on minimal codewords in linear codes | SpringerLink
Skip to main content

Variations on minimal codewords in linear codes

  • Submitted Contributions
  • Conference paper
  • First Online:
Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (AAECC 1995)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 948))

Abstract

We address two topics related to the concept of minimal supports (codewords) in linear codes. In the first part we study the distribution of the number of minimal supports in random codes. In the second part, we propose a generalization of this concept for codes defined as modules over Galois rings. We determine minimal supports for some ℤ4-linear codes. Finally, we extend a recently established link between the cryptographical problem of secret sharing and minimal supports to the case of rings. The resulting secret-sharing schemes have fully and partially authorized coalitions, which permits, e.g., hierarchical access to a common resource.

Supported in part by the International Science Foundation under grant MEF000.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. D. J. A. Welsh, Matroid Theory, Academic Press (1976).

    Google Scholar 

  2. T.-Y. Hwang, “Decoding linear block codes for minimizing word error rate,” IEEE Trans. Inf. Theory, IT-25, No. 6 (November 1979), 733–737.

    Google Scholar 

  3. J. Massey, “Minimal codewords and secret sharing,” in: Proc. Sixth Joint Swedish-Russian Workshop Inf. Theory, Mölle, Sweden (1993), pp. 246–249.

    Google Scholar 

  4. G. R. Blakley and G. A. Kabatianskii, “Linear algebra approach to secret sharing schemes,” in: Error Control, Cryptology, and Speech Compression, Selected papers from Int. Workshop on Inf. Protection, Moscow, Dec. 1993, Springer Lect. Notes. Comput. Sci., 829 (1994), pp. 33–40.

    Google Scholar 

  5. A. Ashikhmin and A. Barg, “Minimal vectors in linear codes and sharing of secrets,” Preprint 94-113, SFB 343 “Diskrete Structure in der Mathematik,” Universität Bielefeld (1994).

    Google Scholar 

  6. A. A. Nechaev, “Kerdock code in a cyclic form,” Diskret. Mat., 1, no. 4 (1989), 123–139. English translation in Discrete Math. Appl., 1 (1991), 365–384.

    Google Scholar 

  7. A. R. Hammons, P. V. Kumar, A. R. Calderbank, N. J. A. Sloane, and P. Solé, “The ℤ4-linearity of Kerdock, Preparata, Goethals, and related codes,” IEEE Trans. Inf. Theory, 40, no. 2 (1994), 301–319.

    Google Scholar 

  8. G. R. Blakley and C. Meadows, “Security of ramp schemes,” in: Advances in Cryptology, Proc. CRYPTO '84, G. R. Blakley and D. Chaum, Eds., Springer Lect. Notes Comput. Sci., 196 (1985), pp. 242–268.

    Google Scholar 

  9. K. Kurosawa, K. Okada, K. Sakano, W. Ogata, and S. Tsujii, “Nonperfect secret sharing schemes and matroids,” in: Proc. EUROCRYPT '93, Springer Lect. Notes Comput. Sci., 765 (1994), pp. 126–141.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Gérard Cohen Marc Giusti Teo Mora

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ashikhmin, A., Barg, A., Cohen, G., Huguet, L. (1995). Variations on minimal codewords in linear codes. In: Cohen, G., Giusti, M., Mora, T. (eds) Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. AAECC 1995. Lecture Notes in Computer Science, vol 948. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60114-7_7

Download citation

  • DOI: https://doi.org/10.1007/3-540-60114-7_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60114-2

  • Online ISBN: 978-3-540-49440-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics