iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/3-540-58338-6_105
Complexity of EOL structural equivalence | SpringerLink
Skip to main content

Complexity of EOL structural equivalence

  • Contributions
  • Conference paper
  • First Online:
Mathematical Foundations of Computer Science 1994 (MFCS 1994)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 841))

Abstract

We show that the EOL structural equivalence problem is logspace hard for deterministic exponential time. Also, we show that this question can be solved in linear space by a synchronized alternating Turing machine, and thus establish an exponential space upper bound for its complexity. The equivalence of finite tree automata is shown to be logspace reducible to context-free structural equivalence. The converse reduction is well known and thus context-free structural equivalence is complete for deterministic exponential time.

Research supported by the Natural Sciences and Engineering Research Council of Canada grants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J. L. Balcázar, J. Díaz and J. Gabarró, Structural Complexity I and II. EATCS Monographs on Theoretical Computer Science, Vol. 11 and Vol. 22, Springer-Verlag, Berlin-Heidelberg, 1988 & 1990.

    Google Scholar 

  2. J. Dassow, J. Hromkovic, J. Karhumäki, B. Rovan, A. Slobodová, On the power of synchronization in parallel computations, Proc. of the 14th MFCS, Lect. Notes Comput. Sci. 379, Springer-Verlag, 1989, pp. 196–206.

    Google Scholar 

  3. F. Gécseg and M. Steinby, Tree automata. Akadémiai Kiadó, Budapest, 1984.

    Google Scholar 

  4. J. Hromkovic, J. Karhumäki, B. Rovan, A. Slobodová, On the power of synchronization in parallel computations, Discrete Appl. Math. 32 (1991) 155–182.

    Google Scholar 

  5. N. Jones and S. Skyum, Complexity of some problems concerning L systems, Math. Systems Theory 13 (1979) 29–43.

    Google Scholar 

  6. K.-J. Lange and M. Schudy, The complexity of the emptiness problem for EOL systems. In: “Lindenmayer Systems: Impacts on Theoretical Computer Science”, G. Rozenberg and A. Salomaa (eds.), Springer-Verlag, 1992, pp. 167–175.

    Google Scholar 

  7. R. McNaughton, Parenthesis grammars, J. Assoc. Comput. Mach. 14 (1967) 490–500.

    Google Scholar 

  8. V. Niemi, A normal form for structurally equivalent EOL grammars. In: “Lindenmayer Systems: Impacts on Theoretical Computer Science”, G. Rozenberg and A. Salomaa (eds.), Springer-Verlag, 1992, pp. 133–148.

    Google Scholar 

  9. T. Ottmann and D. Wood, Defining families of trees with EOL grammars, Discrete Appl. Math. 32 (1991) 195–209.

    Google Scholar 

  10. T. Ottmann and D. Wood, Simplifications of EOL grammars. In: “Lindenmayer Systems: Impacts on Theoretical Computer Science”, G. Rozenberg and A. Salomaa (eds.), Springer-Verlag, 1992, pp. 149–166.

    Google Scholar 

  11. M. Pauli and S. Unger, Structural equivalence of context-free grammars, J. Comput. System Sci. 2 (1968) 427–463.

    Google Scholar 

  12. G. Rozenberg and A. Salomaa, The Mathematical Theory of L Systems. Academic Press, New York, 1980.

    Google Scholar 

  13. K. Salomaa and S. Yu, Decidability of structural equivalence of EOL grammars, Theoret. Comput. Sci. 82 (1991) 131–139.

    Google Scholar 

  14. K. Salomaa, D. Wood and S. Yu, Structural equivalence and ET0L grammars, Proc. of the 9th FCT, Lect. Notes Comput. Sci. 710, Springer-Verlag, 1993, pp. 430–439.

    Google Scholar 

  15. H. Seidl, Deciding equivalence of finite tree automata, SIAM J. Comput. 19 (1990) 424–437.

    Google Scholar 

  16. A. Slobodová, Communication for alternating machines, Acta Inform. 29 (1992) 425–441.

    Google Scholar 

  17. J. W. Thatcher, Tree automata: an informal survey. In: “Currents in the Theory of Computing”, A. V. Aho (ed.), Prentice Hall, Englewood Cliffs, NJ, 1973, pp. 143–172.

    Google Scholar 

  18. J. van Leeuwen, The membership question for ET0L languages is polynomially complete, Inform. Process. Lett. 3 (1975) 138–143.

    Google Scholar 

  19. J. van Leeuwen, The tape-complexity of context-independent developmental languages, J. Comput. System Sci. 11 (1975) 203–211.

    Google Scholar 

  20. J. Wiedermann, On the power of synchronization, J. Inf. Process. Cybern. EIK 25 (1989) 499–506.

    Google Scholar 

  21. D. Wood, Theory of Computation. John Wiley & Sons, New York, NY, second edition, 1994. In preparation.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Igor Prívara Branislav Rovan Peter Ruzička

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Salomaa, K., Wood, D., Yu, S. (1994). Complexity of EOL structural equivalence. In: Prívara, I., Rovan, B., Ruzička, P. (eds) Mathematical Foundations of Computer Science 1994. MFCS 1994. Lecture Notes in Computer Science, vol 841. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-58338-6_105

Download citation

  • DOI: https://doi.org/10.1007/3-540-58338-6_105

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58338-7

  • Online ISBN: 978-3-540-48663-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics