Abstract
We show that the EOL structural equivalence problem is logspace hard for deterministic exponential time. Also, we show that this question can be solved in linear space by a synchronized alternating Turing machine, and thus establish an exponential space upper bound for its complexity. The equivalence of finite tree automata is shown to be logspace reducible to context-free structural equivalence. The converse reduction is well known and thus context-free structural equivalence is complete for deterministic exponential time.
Research supported by the Natural Sciences and Engineering Research Council of Canada grants.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
J. L. Balcázar, J. Díaz and J. Gabarró, Structural Complexity I and II. EATCS Monographs on Theoretical Computer Science, Vol. 11 and Vol. 22, Springer-Verlag, Berlin-Heidelberg, 1988 & 1990.
J. Dassow, J. Hromkovic, J. Karhumäki, B. Rovan, A. Slobodová, On the power of synchronization in parallel computations, Proc. of the 14th MFCS, Lect. Notes Comput. Sci. 379, Springer-Verlag, 1989, pp. 196–206.
F. Gécseg and M. Steinby, Tree automata. Akadémiai Kiadó, Budapest, 1984.
J. Hromkovic, J. Karhumäki, B. Rovan, A. Slobodová, On the power of synchronization in parallel computations, Discrete Appl. Math. 32 (1991) 155–182.
N. Jones and S. Skyum, Complexity of some problems concerning L systems, Math. Systems Theory 13 (1979) 29–43.
K.-J. Lange and M. Schudy, The complexity of the emptiness problem for EOL systems. In: “Lindenmayer Systems: Impacts on Theoretical Computer Science”, G. Rozenberg and A. Salomaa (eds.), Springer-Verlag, 1992, pp. 167–175.
R. McNaughton, Parenthesis grammars, J. Assoc. Comput. Mach. 14 (1967) 490–500.
V. Niemi, A normal form for structurally equivalent EOL grammars. In: “Lindenmayer Systems: Impacts on Theoretical Computer Science”, G. Rozenberg and A. Salomaa (eds.), Springer-Verlag, 1992, pp. 133–148.
T. Ottmann and D. Wood, Defining families of trees with EOL grammars, Discrete Appl. Math. 32 (1991) 195–209.
T. Ottmann and D. Wood, Simplifications of EOL grammars. In: “Lindenmayer Systems: Impacts on Theoretical Computer Science”, G. Rozenberg and A. Salomaa (eds.), Springer-Verlag, 1992, pp. 149–166.
M. Pauli and S. Unger, Structural equivalence of context-free grammars, J. Comput. System Sci. 2 (1968) 427–463.
G. Rozenberg and A. Salomaa, The Mathematical Theory of L Systems. Academic Press, New York, 1980.
K. Salomaa and S. Yu, Decidability of structural equivalence of EOL grammars, Theoret. Comput. Sci. 82 (1991) 131–139.
K. Salomaa, D. Wood and S. Yu, Structural equivalence and ET0L grammars, Proc. of the 9th FCT, Lect. Notes Comput. Sci. 710, Springer-Verlag, 1993, pp. 430–439.
H. Seidl, Deciding equivalence of finite tree automata, SIAM J. Comput. 19 (1990) 424–437.
A. Slobodová, Communication for alternating machines, Acta Inform. 29 (1992) 425–441.
J. W. Thatcher, Tree automata: an informal survey. In: “Currents in the Theory of Computing”, A. V. Aho (ed.), Prentice Hall, Englewood Cliffs, NJ, 1973, pp. 143–172.
J. van Leeuwen, The membership question for ET0L languages is polynomially complete, Inform. Process. Lett. 3 (1975) 138–143.
J. van Leeuwen, The tape-complexity of context-independent developmental languages, J. Comput. System Sci. 11 (1975) 203–211.
J. Wiedermann, On the power of synchronization, J. Inf. Process. Cybern. EIK 25 (1989) 499–506.
D. Wood, Theory of Computation. John Wiley & Sons, New York, NY, second edition, 1994. In preparation.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1994 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Salomaa, K., Wood, D., Yu, S. (1994). Complexity of EOL structural equivalence. In: Prívara, I., Rovan, B., Ruzička, P. (eds) Mathematical Foundations of Computer Science 1994. MFCS 1994. Lecture Notes in Computer Science, vol 841. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-58338-6_105
Download citation
DOI: https://doi.org/10.1007/3-540-58338-6_105
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-58338-7
Online ISBN: 978-3-540-48663-3
eBook Packages: Springer Book Archive