Abstract
In this paper, I will give a brief introduction to the theory of low-density parity-check codes, and their decoding. I will emphasize the case of correcting erasures as it is still the best understood and most accessible case. At the end of the paper, I will also describe more recent developments.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
N. Alon and M. Luby. A linear time erasure-resilient code with nearly optimal recovery. IEEE Trans. Inform. Theory, 42:1732–1736, 1996.
S. Arora and S. Safra. Probabilistic checking of proofs: a new characterization of NP. J. ACM, 45:70–122, 1998.
E.R. Berlekamp, R.J. McEliece, and H.C.A. vanTilborg. On the inherent intractability of certain coding problems. IEEE Trans. Inform. Theory, 24:384–386, 1978.
C. Berroux, A. Glavieux, and P. Thitimajshima. Near Shannon limit error-correcting coding and decoding. In Proceedings of ICC’93, pages 1064–1070, 1993.
P. Elias. Coding for two noisy channels. In Information Theory, Third London Symposium, pages 61–76, 1955.
R. G. Gallager. Low Density Parity-Check Codes. MIT Press, Cambridge, MA, 1963.
M. Luby, M. Mitzenmacher, and M.A. Shokrollahi. Analysis of random processes via and-or tree evaluation. In Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 364–373, 1998.
M. Luby, M. Mitzenmacher, M.A. Shokrollahi, and D. Spielman. Analysis of low density codes and improved designs using irregular graphs. In Proceedings of the 30th Annual ACM Symposium on Theory of Computing, pages 249–258, 1998.
M. Luby, M. Mitzenmacher, M.A. Shokrollahi, and D. Spielman. Improved low-density parity-check codes using irregular graphs and belief propagation. In Proceedings 1998 IEEE International Symposium on Information Theory, page 117, 1998.
M. Luby, M. Mitzenmacher, M.A. Shokrollahi, D. Spielman, and V. Stemann. Practical loss-resilient codes. In Proceedings of the 29th annual ACM Symposium on Theory of Computing, pages 150–159, 1997.
D.J.C. MacKay. Good error-correcting codes based on very sparse matrices. IEEE Trans. Inform. Theory, 45:399–431, 1999.
G. A. Margulis. Explicit constructions of graphs without short cycles and low density codes. Combinatorica, 2:71–78, 1982.
T. Richardson, M.A. Shokrollahi, and R. Urbanke. Design of provably good low-density parity check codes. IEEE Trans. Inform. Theory (submitted), 1999.
T. Richardson and R. Urbanke. The capacity of low-density parity check codes under message-passing decoding. IEEE Trans. Inform. Theory (submitted), 1998.
C. E. Shannon. A mathematical theory of communication. Bell System Tech. J., 27:379–423, 623–656, 1948.
M.A. Shokrollahi. New sequences of linear time erasure codes approaching the channel capacity. To appear in the Proceedings of AAECC’13, 1999.
M. Sipser and D. Spielman. Expander codes. IEEE Trans. Inform. Theory, 42:1710–1722, 1996.
D. Spielman. Linear-time encodable and decodable error-correcting codes. IEEE Trans. Inform. Theory, 42:1723–1731, 1996.
M. R. Tanner. A recursive approach to low complexity codes. IEEE Trans. Inform. Theory, 27:533–547, 1981.
V. V. Zyablov. An estimate of the complexity of constructing binary linear cascade codes. Probl. Inform. Transm., 7:3–10, 1971.
V. V. Zyablov and M. S. Pinsker. Estimation of error-correction complexity of Gallager low-density codes. Probl. Inform. Transm., 11:18–28, 1976.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2000 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Shokrollahi, M.A. (2000). Codes and Graphs. In: Reichel, H., Tison, S. (eds) STACS 2000. STACS 2000. Lecture Notes in Computer Science, vol 1770. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46541-3_1
Download citation
DOI: https://doi.org/10.1007/3-540-46541-3_1
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-67141-1
Online ISBN: 978-3-540-46541-6
eBook Packages: Springer Book Archive