Abstract
Simply put, the goal of performance analysis is to provide the data and insights required to optimize the execution behavior of application or system components. Using such data and insights, application and system developers can choose to optimize software and execution environments along many axes, including execution time, memory requirements, and resource use. Given the diversity of performance optimization goals and the wide range of possible problems, a complete performance analysis toolkit necessarily includes a broad range of techniques. These range from mechanisms for simple code timings to multi-level hardware/software measurement and correlation across networks, system software, runtime libraries, compile-time code transformations, and adaptive execution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Adve, V., Mellor-Crummey, J., Wang, J.-C., and Reed, D. Integrating Compilation and Performance Analysis for Data-Parallel Programs. In Proceedings of Supercomputing’95 (November 1995).
Adve, V. S., Mellor-Crummey, J., Anderson, M., Kennedy, K., Wang, J., and Reed, D. A. Integrating Compilation and Performance Analysis for Data-Parallel Programs. In Proceedings of the Workshop on Debugging and Performance Tuning for Parallel Computing Systems, M. L. Simmons, A. H. Hayes, D. A. Reed, and J. Brown, Eds. IEEE Computer Society Press, 1994.
Balasundaram, V., Fox, G., Kennedy, K., and Kremer, U. A Static Performance Estimator to Guide Data Partitioning Decisions. In 3rd ACM Sigplan Symposium on Principles and Practice of Parallel Programming (PPoPP) (April 1991).
Benkner, S. Vienna Fortran Compilation System-Version 2.0-User’s Guide. Tech. rep., University of Vienna, 1995.
Benkner, S., and Pantano, M. HPF+: Optimizing HPF for Advanced Applications. Supercomputer 13,2 (1997), 31–43.
Benkner, S., Sanjari, K., Sipkova, V., and Velkov, B. Parallelizing Irregular Applications with the Vienna HPF+ Compiler VFC. In HPCN Europe (April 1998), Lecture Notes in Computer Science, Springer-Verlag.
Bodin, F., Beckman, P., Gannon, D., Gotwals, J., Narayana, S., Srinivas, S., and Winnicka, B. Sage++: An Object-Oriented Toolkit and Class Library for Building Fortran and C++ Restructuring Tools. In OON-SKI’94 Proceedings of the First Annual Object-Oriented Numerics Conference (April 1993), pp. 122–138.
Bodin, F., Beckman, P., Gannon, D., Narayana, S., and Yang, S. Distributed pC++: Basic Ideas for an Object Parallel Language. In OON-SKI’93 Proceedings of the First Annual Object-Oriented Numerics Conference (April 1993), pp. 1–24.
Calzarossa, M., Massari, L., Merlo, A., Pantano, M., and Tessera, D. Medea: A Tool for Workload Characterization of Parallel Systems. IEEE Parallel and Distributed Technology 3,4 (November 1995), 72–80.
Calzarossa, M., Massari, L., Merlo, A., Pantano, M., and Tessera, D. Integration of a Compilation System and a Performance Tool: The HPF+ Approach. In HPCN Europe (April 1998), Lecture Notes in Computer Science, Springer-Verlag.
Chang, P. P., Mahlke, S. A., and Hwu, W. W. Using Profile Information to Assist Classic code Optimization. Software-Practice & Experience (to appear).
Cleveland, W. S., and MiGill, M. E., Eds. Dynamic Graphics for Statistics. Wadsworth & Brooks/Cole, 1988.
Colwell, R., Nix, R., O’Donnell, J., Papwoth, D., and Rodman, P. A VLIW Architecture for a Trace Scheduling Compiler. In Proceedings of the Second International Conference on Architectural Support for Programming Languages and Operating Systems (October 1987).
Couch, A.Graphical Representations of Program Performance on Hypercube Message-Passing Multiprocessors. PhD thesis, Tufts University, Department of Computer Science, 1988.
DeRose, L., Zhang, Y., and Reed, D. Svpablo: A Multi-Language Performance Analysis System. In Computer Performance Evaluation Modelling Techniques and Tools (September 1998), R. Puigjaner, N. Savino, and B. Serra, Eds., Lecture Notes in Computer Science, vol. 1469, Springer-Verlag, pp. 352–355.
Fahringer, T. Estimating and Optimizing Performance for Parallel Programs. IEEE Computer 28,11 (November 1995), 47–56.
Fahringer, T. Effective Symbolic Analysis to Support Parallelizing Compilers and Performance Analysis. In HPCN Europe (April 1997), Lecture Notes in Computer Science, Springer-Verlag.
Fisher, J. Trace Scheduling: A Technique for Global Microcode Compactation. IEEE Tranactions on Computers (July 1981), 478–490.
Foster, I., and Kesselman, C., Eds. The Grid: Blueprint for a New Computing Infrastructure. Morgan-Kaufmann, 1998.
Graham, S., Kessler, P., and McKusick, M. gprof: A Call Graph Execution Profiler. In Proceedings of the SIGPLAN’82 Symposium on Compiler Construction (Boston, MA, June 1982), Association for Computing Machinery, pp. 120–126.
Gu, W., Eisenhauer, G., Schwan, K., and Vetter, J. Falcon: On-line monitoring and steering of parallel programs. Concurrency: Practice and Experience 10,9 (1998), 699–736.
Hartleb, F., and Mertsiotakis, V. Bounds for the Mean Runtime of Parallel Programs. In Computer Performance Evaluation’ 92: Modeling Techniques and Tools (1992), R. Pooley and J. Hillston, Eds., pp. 197–210.
Heath, M. T., and Etheridge, J. A. Visualizing the Performance of Parallel Programs. IEEE Software (Sept. 1991), 29–39.
Heath, M. T., Malony, A. D., and Rover, D. T. The Visual Display of Parallel Performance Data. Computer 28,11 (1995), 21–8.
Hurley, C., and Buja, A. Analyzing High-dimensional Data with Motion Graphics. SIAM Journal of Scientific and Statistical Computing 11,6 (Nov. 1990), 1193–1211.
Kraemer, E., and Stasko, J. T. The Visualization of Parallel Systems: An Overview. Jour. Parallel and Distributed Computing 18,2 (1993), 105–17.
Larus, J. R., and Schnarr, E. EEL: Machine-Independent Executable Editing. In Proceedings of the SIGPLAN’ 95 Conference on Programming Languages Design and Impelementation (PLDI) (June 1995).
LeBlanc, T. J., and Markatos, E. P. Operating System Support for Adaptive Real-time Systems. In Proceedings of the Seventh IEEE Workshop on Real-Time Operating Systems and Software (May 1990), pp. 1–10.
Malony, A. D., Reed, D. A., and Wijshoff, H. Performance Measurement Intrusion and Perturbation Analysis. IEEE Transactions on Parallel and Distributed Systems 3,4 (July 1992), 433–450.
Mendes, C. L.Performance Scalability Prediction on Multicomputers. PhD thesis, University of Illinois at Urbana-Champaign, May 1997.
Mendes, C. L., Wang, J.-C., and Reed, D. A. Automatic Performance Prediction and Scalability Analysis for Data Parallel Programs. In Proceedings of the CRPC Workshop on Data Layout and Performance Prediction (Houston, April 1995).
Miller, B. P., Callaghan, M. D., Cargille, J. M., Hollingsworth, J. K., Irvin, R. B., Karavanic, K. L., Kunchithapadam, K., and Newhall, T. The Paradyn Parallel Performance Measurement Tools. IEEE Computer 28,11 (November 1995), 37–46.
MIPS Technologies Inc. MIPS R10000 Microprocessor User’s Manual, 2.0 ed., 1996.
Mohr, B., Malony, A., and Cuny, J. Tau Tuning and Analysis Utilities for Portable Parallel Programming. In Parallel Programming using C++, G. Wilson, Ed. M.I.T. Press, 1996.
Nickolayev, O. Y., Roth, P. C., and Reed, D. A. Real-time Statistical Clustering for Event Trace Reduction. International Journal of Supercomputer Applications and High Performance Computing (1997).
Reed, D. A. Experimental Performance Analysis of Parallel Systems: Techniques and Open Problems. In Proceedings of the 7th International Conference on Modelling Techniques and Tools for Computer Performance Evaluation (May 1994), pp. 25–51.
Reed, D. A., Aydt, R. A., DeRose, L., Mendes, C. L., Ribler, R. L., Shaffer, E., Simitci, H., Vetter, J. S., Wells, D. R., Whitmore, S., and Zhang, Y. Performance Analysis of Parallel Systems: Approaches and Open Problems. In Proceedings of the Joint Symposium on Parallel Processing (JSPP) (June 1998), pp. 239–256.
Reed, D. A., Aydt, R. A., Noe, R. J., Roth, P. C., Shields, K. A., Schwartz, B., and Tavera, L. F. Scalable Performance Analysis: The Pablo Performance Analysis Environment. In Proceedings of the Scalable Parallel Libraries Conference (1993), A. Skjellum, Ed., IEEE Computer Society.
Reed, D. A., Elford, C. L., Madhyastha, T., Scullin, W. H., Aydt, R. A., and Smirni, E. I/O, Performance Analysis, and Performance Data Immersion. In Proceedings of MASCOTS’ 96 (Feb. 1996), pp. 1–12.
Ribarsky, W., Ayers, E., Eble, J., and Mukherjea, S. Using Glyphmaker to Create Customized Visualizations of Complex Data. IEEE Computer, July (1994), 57–64.
Ribler, R., Vetter, J., Simitci, H., and Reed, D. Autopilot: Adaptive Control of Distributed Applications. In Proc. Seventh IEEE Int’l Symp. High Performance Distributed Computing (HPDC) (1998), pp. 172–9.
Robertson, G. G., Card, S. K., and Mackinlay, J. D. Information Visualization using 3D Interactive Animation. Communications of the ACM 36,4 (1993), 56–71.
Rosenblum, L. J. Research Issues in Scientific Visualization. IEEE Computer Graphics and Applications 14,2 (1994), 61–3.
Stasko, J., Domingue, J., Brown, M. H., and Price, B. A., Eds. Software Visualization: Programming as a Multimedia Experience,. MIT Press, Cambridge, MA, 1998.
Sun, X. H., Pantano, M., and Fahringer, T. Performance Range Comparison for Restructuring Compilation. In IEEE International Conference on Parallel Processing (Minneapolis, August 1998), pp. 595–602.
Vetter, J. S. Computational Steering Annotated Bibliography. SIGPLAN Notices 32,6 (1997), 40–4.
Yan, J. C., Sarukkai, S. R., and Mehra, P. Performance Measurement, Visualization and Modeling of Parallel and Distributed Programs using the AIMS Toolkit. Software Practice & Experience 25,4 (April 1995), 429–461.
Zagha, M., Larson, B., Turner, S., and Itzkowitz, M. Performance Analysis Using the MIPS R10000 Performance Counters. In Proceedings of Supercomputing’96 (November 1996).
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2000 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
DeRose, L.A., Pantano, M., Reed, D.A., Vetter, J.S. (2000). Performance Issues in Parallel Processing Systems. In: Haring, G., Lindemann, C., Reiser, M. (eds) Performance Evaluation: Origins and Directions. Lecture Notes in Computer Science, vol 1769. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46506-5_6
Download citation
DOI: https://doi.org/10.1007/3-540-46506-5_6
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-67193-0
Online ISBN: 978-3-540-46506-5
eBook Packages: Springer Book Archive