Abstract
A method is presented for determining likely paths of anatomical connection between regions of the brain using MR diffusion tensor information. Level set theory, applied using fast marching methods, is used to generate 3-D time of arrival maps, from which connection paths between brain regions may be identified. The method is demonstrated in the normal brain and it is shown that major white matter tracts may be elucidated and that multiple connections and tract branching are allowed. Maps of the likelihood of connection between brain regions are also determined. Two metrics are described for estimating the (informal) likelihood of connection between regions.
Acknowledgements
This work was supported by the Multiple Sclerosis Society of Great Britain and Northern Ireland. The contributions of Klaas Stephan, Olga Ciccarelli, Sofia Eriksson, David Werring, and Olivier Coulon are gratefully acknowledged.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Basser, P.J., Mattiello, J., Le Bihan, D.: Estimation of the Effective Self-Diffusion Tensor from the NMR Spin Echo. J. Magn. Reson. B. 103 (1994) 247–254
Pierpaoli, C., Basser, P.J.: Toward a Quantitative Assessment of Diffusion Anisotropy. Magn. Reson. Med. 36 (1996) 893–906
Basser, P.J., Pierpaoli, C.: Microstructural and Physiological Features of Tissues Elucidated by Quantitative-Diffusion-Tensor MRI. J. Magn. Reson. B. 111 (1996) 209–219
Jones, D.K., Simmons, A., Williams, S.C.R., Horsfield, M.A.: Non-Invasive Assessment of Axonal Fiber Connectivity in the Human Brain via Diffusion Tensor MRI. Magn. Reson. Med. 42 (1999) 37–41
Poupon, C., Clark, C.A., Froulin, V., et al.: Regularization of Diffusion-Based Direction Maps for the Tracking of Brain White Matter Fascicles. NeuroImage 12 (2000) 184–195
Conturo, T.E., Lori, N.F., Cull, T.S., et al.: Tracking Neuronal Fiber Pathways in the Living Human Brain. Proc. Nat. Acad. Sci. USA 96 (1999) 10422–10427
Mori, S., Crain, B.J., Chacko, V.P., van Zijl, P.C.M.: Three-Dimensional Tracking of Axonal Projections in the Brain by Magnetic Resonance Imaging. Ann. Neurol. 45 (1999) 265–269
Basser, P.J., Pajevic, S., Pierpaoli, C., Duda, J., Aldroubi, A.: In Vivo Fiber Tractography Using DT-MRI Data. Magn. Reson. Med. 44 (2000) 625–632
Tuch, D.S., Belliveau, J.W., Wedeen, V.J.: A Path Integral Approach to White Matter Tractography. In: Proceedings of the 8th meeting of the International Society for Magnetic Resonance in Medicine. (2000) 791
Sethian, J.A.: A Fast Marching Level Set Method for Monotonically Advancing Fronts. Proc. Nat. Acad. Sci. USA 93 (1996) 1591–1595
Sethian, J.A.: Level Set Methods and Fast Marching Methods. 2nd edn. Cambridge University Press, Cambridge (1999)
Malladi, R. and Sethian, J.A.: An O(NlogN) Algorithm for Shape Modeling. Proc. Nat. Acad. Sci. USA 93 (1996) 9389–9392
Parker, G.J.M. and Dehmeshki, J.: A Fast Marching Analysis of MR Diffusion Tensor Imaging for Following White Matter Tracts. In: Medical Image Understanding and Analysis MIUA2000 (2000) 185–188
Parker, G.J.M. and Dehmeshki, J.: A Level Sets Approach to Determining Brain Region Connectivity. In: Proceedings of the 1st International Workshop on Image and Signal Processing and Analysis IWISPA 2000, 22nd International conference on Information Technology Interfaces (2000) 145–150
Kimmel, R. and Sethian, J.A.: Computing Geodesic Paths on Manifolds. Proc. Natl. Acad. Sci. USA 95 (1998) 8431–8435
Jones, D.K., Horsfield, M.A., Simmons, A.: Optimal Strategies for Measuring Diffusion in Anisotropic Systems by Magnetic Resonance Imaging. Magn. Reson. Med. 42 (1999) 515–525
Talairach, J. and Tournoux, P.: Co-planar Stereotaxic Atlas of the Human Brain. Georg Thieme Verlag, Stuttgart (1988)
Bürgel, U., Schormann, T., Schleicher, A., Zilles, K.: Mapping of Histologically Identified Long Fiber Tracts in Human Cerebral Hemispheres to the MRI Volume of a Reference Brain: Position and Spatial Variability of the Optic Radiation. NeuroImage 10 (1999) 489–499
Miklossy, J., van der Loos, H.: The Long-Distance Effects of Brain Lesions: Visualization of Myelinated Pathways in the Human Brain Using Polarizing and Fluorescence Microscopy. J. Neuropathol. Exp. Neurol. 50 (1991) 1–15
Pujol, R., Marti-Vilalta, J. L., Junque, C., Vendrell, P., Fernandez, J.,and Capdevilla, A.: Wallerian Degeneration of the Pyramidal Tract Studied by Magnetic Resonance Imaging. Stroke 21 (1990) 404–409
Werring, D.J., Toosey, A.T., Clark, C.A., Parker, G.J.M., Barker, G.J., Miller, D.H., Thompson, A.J.: Diffusion tensor imaging can detect and quantify corticospinal tract degeneration after stroke. J. Neurol. Neurosurg. Psychiatry 69 (2000) 269–272
Stephan, K.E., Parker, G.J.M., Barker, G.J., Rowe, J.B., MacManus, D.G., Passingham, R.E., Lemon, R.N., Turner, R.: In Vivo Tracing of Anatomical Fibre Tracts in the Macaque Monkey Brain by Diffusion Tensor Imaging (DTI). In: Proceedings Human Brain Mapping (2001) (In press)
Styner, M., Coradi, T., Gerig, G.: Brain Morphometry by Distance Measurement in a Non-Euclidian, Curvilinear Space. In: Kuba, A., Šámal, M., Todd-Pokropek, A. (eds.): Information Processing in Medical Imaging IPMI’99. Lecture Notes Computer Science, Vol. 1613. Springer-Verlag, Berlin Heidelberg New York (1999) 364–369
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Spinger-Verlag Berlin Heidelberg
About this paper
Cite this paper
Parker, G.J., Wheeler-Kingshott, 1.A., Barker, G.J. (2001). Distributed Anatomical Brain Connectivity Derived from Diffusion Tensor Imaging. In: Insana, M.F., Leahy, R.M. (eds) Information Processing in Medical Imaging. IPMI 2001. Lecture Notes in Computer Science, vol 2082. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45729-1_9
Download citation
DOI: https://doi.org/10.1007/3-540-45729-1_9
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-42245-7
Online ISBN: 978-3-540-45729-9
eBook Packages: Springer Book Archive