iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/3-540-45452-7_15
On the Complexity of Deriving Position Specific Score Matrices from Examples | SpringerLink
Skip to main content

On the Complexity of Deriving Position Specific Score Matrices from Examples

  • Conference paper
  • First Online:
Combinatorial Pattern Matching (CPM 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2373))

Included in the following conference series:

Abstract

PSSMs (Position-Specific Score Matrices) have been applied to various problems in Bioinformatics. We study the following problem: given positive examples (sequences) and negative examples (sequences), find a PSSM which correctly discriminates between positive and negative examples. We prove that this problem is solved in polynomial time if the size of a PSSM is bounded by a constant. On the other hand, we prove that this problem is NP-hard if the size is not bounded. We also prove similar results on deriving a mixture of PSSMs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Akutsu, T., Yagiura, M.: On the complexity of deriving score functions from examples for problems in molecular biology. Proc. ICALP’98. Lecture Notes in Computer Science, Vol. 1443. Springer-Verlag, Berlin Heidelberg New York (1998) 832–843

    Google Scholar 

  2. Akutsu, T., Arimura, H., Shimozono, S.: On approximation algorithms for local multiple alignment. Proc. 4th ACM Int. Conf. Computational Molecular Biology (2000) 1–7

    Google Scholar 

  3. Durbin, R., Eddy, S., Krogh, A., Mitchison, G.: Biological Sequence Analysis. Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press (1998)

    Google Scholar 

  4. Edelsbrunner, H.: Algorithms in Combinatorial Geometry. Springer-Verlag, Berlin Heidelberg New York (1987)

    MATH  Google Scholar 

  5. Garey, M. R., Johnson, D. S.: Computers and Intractability. Freeman (1979)

    Google Scholar 

  6. Henikoff, S., Henikoff, J. G.: Amino acid substitution matrices from protein blocks. Proc. National Academy of Sciences of the USA 89 (1992) 10915–10919

    Article  Google Scholar 

  7. Jiang, T., Li, M.: On the complexity of learning strings and sequences. Proc. 4th ACM Workshop on Computational Learning Theory (1991) 367–274

    Google Scholar 

  8. Kann, M., Qian, B., Goldstein, R. A.: Optimization of a new score function for detection of remote homologs. Proteins 41 (2000) 498–503

    Article  Google Scholar 

  9. Kyte, J., Doolittle, R. F.: A simple method for displaying the hydropathic character of a protein. J. Molecular Biology 157 (1982) 105–132

    Article  Google Scholar 

  10. Lanctot, K., Li, M., Ma, B., Wang, S., Zhang, L.: Distinguishing string selection problems. Proc. 10th ACM-SIAM Symp. Discrete Algorithms (1999) 633–642

    Google Scholar 

  11. Li, M., Ma, B., Wang, L.: Finding similar regions in many strings. Proc. 31st ACM Symp. Theory of Computing (1999) 473–482

    Google Scholar 

  12. Miyano, S., Shinohara, A., Shinohara, T.: Which classes of elementary formal systems are polynomial-time learnable. Proc. 2nd Workshop on Algorithmic Learning Theory (1991) 139–150

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Akutsu, T., Bannai, H., Miyano, S., Ott, S. (2002). On the Complexity of Deriving Position Specific Score Matrices from Examples. In: Apostolico, A., Takeda, M. (eds) Combinatorial Pattern Matching. CPM 2002. Lecture Notes in Computer Science, vol 2373. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45452-7_15

Download citation

  • DOI: https://doi.org/10.1007/3-540-45452-7_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43862-5

  • Online ISBN: 978-3-540-45452-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics