iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/3-540-44989-2_12
Optimal Hebbian Learning: A Probabilistic Point of View | SpringerLink
Skip to main content

Optimal Hebbian Learning: A Probabilistic Point of View

  • Conference paper
  • First Online:
Artificial Neural Networks and Neural Information Processing — ICANN/ICONIP 2003 (ICANN 2003, ICONIP 2003)

Abstract

Many activity dependent learning rules have been proposed in order to model long-term potentiation (LTP). Our aim is to derive a spike time dependent learning rule from a probabilistic optimality criterion. Our approach allows us to obtain quantitative results in terms of a learning window. This is done by maximising a given likelihood function with respect to the synaptic weights. The resulting weight adaptation is compared with experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. H.D.I. Abarbanel, R. Huerta and M.I. Rabinovich: Dynamical model of long-term synaptic plasticity. Proc. Natl. Acad. Sci. USA, 2002, Vol. 99, Issue 15, 10132–10137.

    Article  Google Scholar 

  2. D. Barber: Learning in Spiking Neural Assemblies. To appear in proceedings of NIPS 2002.

    Google Scholar 

  3. G.Q. Bi and M.M. Poo: Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci., 1998, Vol. 18, 10464–10472.

    Google Scholar 

  4. G.Q. Bi and M.M. Poo: Synaptic modifications by correlated activity: Hebb’s postulate revisited. Annu. Rev. Neurosci., 2001, Vol. 24, 139–166.

    Article  Google Scholar 

  5. G. Bugmann and C. Christodoulou and J.G. Taylor: Role of temporal integration and fluctuation detection in the highly irregular firing of leaky integrator neuron model with partial reset. Neural Computation, 1997, Vol. 9, 985–1000.

    Article  Google Scholar 

  6. B.W. Connors, M.J. Gutnick and D.A. Prince: Electrophysiological Properties of Neocortical Neurons in Vitro. J. Neurophysiol. 1982, Vol. 48, 1302–1320.

    Google Scholar 

  7. D. Debanne and B.H. Gähwiler and S.M. Thompson: Long-term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures. J. Physiol., 1998, Vol. 507, 237–247.

    Article  Google Scholar 

  8. R. Froemke and Y. Dan: Spike-timing dependent plasticity induced by natural spike trains. Nature, 2002, Vol. 416, 433–438.

    Article  Google Scholar 

  9. W. Gerstner: Time Structure of the Activity in Neural Network Models. Phys. Rev. E, 1995, 51, Vol. 1, 738–758.

    Article  Google Scholar 

  10. W. Gerstner, R. Kempter, J.L. van Hemmen and H. Wagner: A neuronal learning rule for sub-millisecond temporal coding, Nature, 1996, Vol. 383, 76–78.

    Article  Google Scholar 

  11. W. Gerstner and W.M. Kistler: Spiking Neuron Models. Cambridge University Press, 2002.

    Google Scholar 

  12. W. Gerstner and W.M. Kistler: Mathematical Formulations of Hebbian Learning. Biological Cybernetics, 2002, 87, 404–415.

    Article  MATH  Google Scholar 

  13. R. Gütig and R. Aharonov and S. Rotter and H. Sompolinsky: Learning input correlations through non-linear temporally asymmetry Hebbian plasticity. To appear.

    Google Scholar 

  14. D.O. Hebb: The Organization of Behavior. Wiley, 1949, New York.

    Google Scholar 

  15. R. Kempter and W. Gerstner and J. L. van Hemmen: Hebbian learning and spiking neurons. Phys. Rev. E, 1999, Vol. 59,4, 4498–4514.

    Article  MathSciNet  Google Scholar 

  16. W.M. Kistler and J. Leo van Hemmen: Modeling Synaptic Plasticity in Conjunction with the timing of pre-and postsynaptic potentials. Neural Comput. 2000, Vol 12, 385–405.

    Article  Google Scholar 

  17. H. Markram and B. Sakmann: Action potentials propagating back into dendrites trigger changes in efficacy of single-axon synapses between layer V pyramidal neurons. Soc. Neurosci. Abstr.”, 1995, Vol. 21, 2007.

    Google Scholar 

  18. M. Rapp, Y. Yarom and I. Siegev: Modeling back propagating action potential in weakly excitable dendrites of neocortical pyramidal cells. Proc. Natl. Acad. Sci USA, 1996, Vol. 93, 11985–11990.

    Article  Google Scholar 

  19. P.D. Roberts and C.C. Bell: Spike timing dependent synaptic plasticity in biological systems. Biol. Cybernetics, 2002, Vol. 87, 392–403.

    Article  MATH  Google Scholar 

  20. W. Senn, H. Markram and M. Tsodyks: An Algorithm for Modifying Neurotransmitter Release Probability Based on Pre-and Postsynaptic Spike Timing. Neural Comput. 2000, Vol. 13, 35–67.

    Article  Google Scholar 

  21. H.Z. Shouval, M.F. Bear and L.N. Cooper: A unified model of NMDA receptor dependent bidirectional synaptic plasticity. Proc. Natl. Acad. Sci. USA, 2002, Vol. 99, 10831–10836.

    Article  Google Scholar 

  22. P.J. Sjöström, G.G. Turrigiano and S.B. Nelson; Rate, timing, and cooperativity jointly determine cortical synaptic plasticity. Neuron, 2001, Vol. 32, 1149–1164.

    Article  Google Scholar 

  23. S. Song and K.D. Miller and L.F. Abbott: Competitive Hebbian learning through spike-time-dependent synaptic plasticity. Nature Neuroscience, 2000, Vol. 3, 919–926

    Article  Google Scholar 

  24. G.J. Stuart and B. Sakmann: Active propagation of somatic action-potentials into neocortical pyramidal cell dendrites. Nature, 1994, Vol. 367, 69–72.

    Article  Google Scholar 

  25. T.W. Troyer and K.D. Miller: Physiological gain leads to high ISI variability in a simple model of a cortical regular spiking cell. Neural Computation, 1997, Vol. 9, 971–983.

    Article  Google Scholar 

  26. M.C.W. van Rossum and G.Q. Bi and G.G. Turrigiano: table Hebbian learning from spike timing-dependent plasticity. J. Neuroscience, 2000, Vol. 20, 8812–8821.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pfister, JP., Barber, D., Gerstner, W. (2003). Optimal Hebbian Learning: A Probabilistic Point of View. In: Kaynak, O., Alpaydin, E., Oja, E., Xu, L. (eds) Artificial Neural Networks and Neural Information Processing — ICANN/ICONIP 2003. ICANN ICONIP 2003 2003. Lecture Notes in Computer Science, vol 2714. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44989-2_12

Download citation

  • DOI: https://doi.org/10.1007/3-540-44989-2_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40408-8

  • Online ISBN: 978-3-540-44989-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics