Abstract
In this paper we present a heuristic based on dynamic approximations for improving the well-known Schnorr-Euchner lattice basis reduction algorithm. In particular, the new heuristic is more efficient in reducing large problem instances and extends the applicability of the Schnorr-Euchner algorithm such that problem instances that the stateof- the-art method fails to reduce can be solved using our new technique.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ajtai, M.: Generating Hard Instances of Lattice Problems. Proceedings of the 28th ACM Symposium on Theory of Computing, pp. 99–108 (1996).
Ajtai, M., and Dwork, C.: A Public-Key Cryptosystem with Worst-Case/Average-Case Equivalence. Proceedings of the 29th ACM Symposium on Theory of Computing, pp. 284–293 (1997).
Backes, W., and Wetzel, S.: New Results on Lattice Basis Reduction in Practice. Proceedings of Fourth Algorithmic Number Theory Symposium (ANTS IV), Springer Lecture Notes in Computer Science LNCS 1838, pp. 135–152(2000).
Biehl, I., Buchmann, J., and Papanikolaou, T.: LiDIA: A Library for Computational Number Theory. Technical Report 03/95, SFB 124, Universität des Saarlandes, Saarbrücken, Germany (1995).
Camion, P., and Patarin, J.: The Knapsack Hash Function Proposed at CRYPTO’ 89 can be Broken. Proceedings of EUROCRYPT’ 91, Springer Lecture Notes in Computer Science LNCS 547, pp. 39–53 (1991).
Cohen, H.: A Course in Computational Algebraic Number Theory. Second Edition, Springer-Verlag, Heidelberg (1993).
Coppersmith, D.: Small Solutions to Polynomial Equations, and Low Exponent RSA Vulnerabilities. Journal of Cryptology, Vol. 10(4), pp. 233–260 (1997).
Coster, M.J., Joux, A., LaMacchia, B.A., Odlyzko, A.M., Schnorr, C.P., and Stern, J.: Improved Low-Density Subset Sum Algorithms. Journal of Computational Complexity, Vol. 2, pp. 111–128 (1992).
Damgård, I.B.: A Design Principle for Hash Functions. Proceedings of CRYPTO’ 89, Springer Lecture Notes in Computer Science LNCS 435, pp. 416–427 (1989).
Frieze, A.M., Håstad, J., Kannan, R., Lagarias, J.C., and Shamir, A.: Reconstructing Truncated Integer Variables Satisfying Linear Congruences. SIAM J. Comput. 17(2), pp. 262–280 (1988).
Goldreich, O., Goldwasser, S., and Halevi, S.: Public-Key-Cryptosystems from Lattice Reduction Problems. Proceedings of CRYPTO’ 97, Springer Lecture Notes in Computer Science LNCS 1294, pp. 112–131 (1997).
Grötschel, M., Lovász, L., and Schrijver, A.: Geometric Algorithms and Combinatorial Optimization. Second Edition, Springer-Verlag, Heidelberg (1993).
Joux, A., and Stern, J.: Lattice Reduction: A Toolbox for the Cryptanalyst. Journal of Cryptology, Vol. 11, No. 3, pp. 161–185 (1998).
Lagarias, J.C.: Point Lattices. Handbook of Combinatorics, Vol. 1, Chapter 19, Elsevier (1995).
Lenstra, A.K., Lenstra, H.W., and Lovász, L.: Factoring Polynomials with Rational Coefficients. Math. Ann. 261, pp. 515–534 (1982).
LiDIA Group: LiDIA Manual. Universität des Saarlandes/TU Darmstadt, Germany, see LiDIA homepage: http://www.informatik.tu-darmstadt.de/TI/LiDIA (1999).
Nguyen, P.: Cryptanalysis of the Goldreich-Goldwasser-Halevi Cryptosystem from Crypto’ 97. Proceedings of Crypto’ 99, Springer Lecture Notes in Computer Science LNCS 1666, pp. 288–304 (1999).
Nguyen, P., and Stern, J.: Cryptanalysis of a Fast Public Key Cryptosystem Presented at SAC’ 97. Proceedings of Selected Areas in Cryptography’ 98, Springer Lecture Notes in Computer Science LNCS 1556 (1999).
Pohst, M.E., and Zassenhaus, H.J.: Algorithmic Algebraic Number Theory. Cambridge University Press (1989).
Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P.: Numerical Recipes in C. Cambridge University Press (1995).
Schnorr, C.P., and Euchner, M.: Lattice Basis Reduction: Improved Practical Algorithms and Solving Subset Sum Problems. Proceedings of Fundamentals of Computation Theory’ 91, Springer Lecture Notes in Computer Science LNCS 529, pp. 68–85 (1991).
Wetzel, S.: Lattice Basis Reduction Algorithms and their Applications. PhD Thesis, Universität des Saarlandes, Saarbrücken, Germany (1998).
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Backes, W., Wetzel, S. (2001). Lattice Basis Reduction with Dynamic Approximation. In: Näher, S., Wagner, D. (eds) Algorithm Engineering. WAE 2000. Lecture Notes in Computer Science, vol 1982. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44691-5_6
Download citation
DOI: https://doi.org/10.1007/3-540-44691-5_6
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-42512-0
Online ISBN: 978-3-540-44691-0
eBook Packages: Springer Book Archive