iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/3-540-44691-5_6
Lattice Basis Reduction with Dynamic Approximation | SpringerLink
Skip to main content

Lattice Basis Reduction with Dynamic Approximation

  • Conference paper
  • First Online:
Algorithm Engineering (WAE 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1982))

Included in the following conference series:

  • 442 Accesses

Abstract

In this paper we present a heuristic based on dynamic approximations for improving the well-known Schnorr-Euchner lattice basis reduction algorithm. In particular, the new heuristic is more efficient in reducing large problem instances and extends the applicability of the Schnorr-Euchner algorithm such that problem instances that the stateof- the-art method fails to reduce can be solved using our new technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ajtai, M.: Generating Hard Instances of Lattice Problems. Proceedings of the 28th ACM Symposium on Theory of Computing, pp. 99–108 (1996).

    Google Scholar 

  2. Ajtai, M., and Dwork, C.: A Public-Key Cryptosystem with Worst-Case/Average-Case Equivalence. Proceedings of the 29th ACM Symposium on Theory of Computing, pp. 284–293 (1997).

    Google Scholar 

  3. Backes, W., and Wetzel, S.: New Results on Lattice Basis Reduction in Practice. Proceedings of Fourth Algorithmic Number Theory Symposium (ANTS IV), Springer Lecture Notes in Computer Science LNCS 1838, pp. 135–152(2000).

    MATH  Google Scholar 

  4. Biehl, I., Buchmann, J., and Papanikolaou, T.: LiDIA: A Library for Computational Number Theory. Technical Report 03/95, SFB 124, Universität des Saarlandes, Saarbrücken, Germany (1995).

    Google Scholar 

  5. Camion, P., and Patarin, J.: The Knapsack Hash Function Proposed at CRYPTO’ 89 can be Broken. Proceedings of EUROCRYPT’ 91, Springer Lecture Notes in Computer Science LNCS 547, pp. 39–53 (1991).

    MATH  Google Scholar 

  6. Cohen, H.: A Course in Computational Algebraic Number Theory. Second Edition, Springer-Verlag, Heidelberg (1993).

    Book  Google Scholar 

  7. Coppersmith, D.: Small Solutions to Polynomial Equations, and Low Exponent RSA Vulnerabilities. Journal of Cryptology, Vol. 10(4), pp. 233–260 (1997).

    Google Scholar 

  8. Coster, M.J., Joux, A., LaMacchia, B.A., Odlyzko, A.M., Schnorr, C.P., and Stern, J.: Improved Low-Density Subset Sum Algorithms. Journal of Computational Complexity, Vol. 2, pp. 111–128 (1992).

    Article  MathSciNet  Google Scholar 

  9. Damgård, I.B.: A Design Principle for Hash Functions. Proceedings of CRYPTO’ 89, Springer Lecture Notes in Computer Science LNCS 435, pp. 416–427 (1989).

    MATH  Google Scholar 

  10. Frieze, A.M., Håstad, J., Kannan, R., Lagarias, J.C., and Shamir, A.: Reconstructing Truncated Integer Variables Satisfying Linear Congruences. SIAM J. Comput. 17(2), pp. 262–280 (1988).

    Article  MathSciNet  Google Scholar 

  11. Goldreich, O., Goldwasser, S., and Halevi, S.: Public-Key-Cryptosystems from Lattice Reduction Problems. Proceedings of CRYPTO’ 97, Springer Lecture Notes in Computer Science LNCS 1294, pp. 112–131 (1997).

    MATH  Google Scholar 

  12. Grötschel, M., Lovász, L., and Schrijver, A.: Geometric Algorithms and Combinatorial Optimization. Second Edition, Springer-Verlag, Heidelberg (1993).

    Book  Google Scholar 

  13. Joux, A., and Stern, J.: Lattice Reduction: A Toolbox for the Cryptanalyst. Journal of Cryptology, Vol. 11, No. 3, pp. 161–185 (1998).

    Article  MathSciNet  Google Scholar 

  14. Lagarias, J.C.: Point Lattices. Handbook of Combinatorics, Vol. 1, Chapter 19, Elsevier (1995).

    Google Scholar 

  15. Lenstra, A.K., Lenstra, H.W., and Lovász, L.: Factoring Polynomials with Rational Coefficients. Math. Ann. 261, pp. 515–534 (1982).

    Article  MathSciNet  Google Scholar 

  16. LiDIA Group: LiDIA Manual. Universität des Saarlandes/TU Darmstadt, Germany, see LiDIA homepage: http://www.informatik.tu-darmstadt.de/TI/LiDIA (1999).

    Google Scholar 

  17. Nguyen, P.: Cryptanalysis of the Goldreich-Goldwasser-Halevi Cryptosystem from Crypto’ 97. Proceedings of Crypto’ 99, Springer Lecture Notes in Computer Science LNCS 1666, pp. 288–304 (1999).

    MATH  Google Scholar 

  18. Nguyen, P., and Stern, J.: Cryptanalysis of a Fast Public Key Cryptosystem Presented at SAC’ 97. Proceedings of Selected Areas in Cryptography’ 98, Springer Lecture Notes in Computer Science LNCS 1556 (1999).

    MATH  Google Scholar 

  19. Pohst, M.E., and Zassenhaus, H.J.: Algorithmic Algebraic Number Theory. Cambridge University Press (1989).

    Google Scholar 

  20. Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P.: Numerical Recipes in C. Cambridge University Press (1995).

    Google Scholar 

  21. Schnorr, C.P., and Euchner, M.: Lattice Basis Reduction: Improved Practical Algorithms and Solving Subset Sum Problems. Proceedings of Fundamentals of Computation Theory’ 91, Springer Lecture Notes in Computer Science LNCS 529, pp. 68–85 (1991).

    MATH  Google Scholar 

  22. Wetzel, S.: Lattice Basis Reduction Algorithms and their Applications. PhD Thesis, Universität des Saarlandes, Saarbrücken, Germany (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Backes, W., Wetzel, S. (2001). Lattice Basis Reduction with Dynamic Approximation. In: Näher, S., Wagner, D. (eds) Algorithm Engineering. WAE 2000. Lecture Notes in Computer Science, vol 1982. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44691-5_6

Download citation

  • DOI: https://doi.org/10.1007/3-540-44691-5_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42512-0

  • Online ISBN: 978-3-540-44691-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics