Abstract
A dynamic clustering method for mixed feature-type symbolic data is presented. The proposed method needs a previous pre-processing step to transform Boolean symbolic data into modal symbolic data. The presented dynamic clustering method has then as input a set of vectors of modal symbolic data and furnishes a partition and a prototype to each class by optimizing an adequacy criterion based on a suitable squared Euclidean distance. To show the usefulness of this method, examples with symbolic data sets are considered.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
BOCK, H.H. (2002): Clustering algorithms and kohonen maps for symbolic data. Proc. ICNCB, Osaka, 203–215. J. Jpn. Soc. Comp. Statistic, 15, 1–13.
BOCK, H.H. and DIDAY, E. (2000): Analysis of Symbolic Data, Exploratory methods for extracting statistical information from complex data. Springer, Heidelberg.
CHAVENT, M. and LECHEVALLIER, Y. (2002). Dynamical Clustering Algorithm of Interval Data: Optimization of an Adequacy Criterion Based on Hausdorff Distance. In: A. Sokolowski and H.-H. Bock (Eds.): Classification, Clustering and Data Analysis. Springer, Heidelberg, 53–59.
CHAVENT, M., DE CARVALHO, F.A.T., LECHEVALLIER, Y. and VERDE, R. (2003). Trois nouvelles mthodes de classification automatique de données symboliques de type intervalle. Revue de Statistique Appliquée, v. LI, n. 4, p. 5–29.
DE CARVALHO, F.A.T. (1995). Histograms in Symbolic Data Analysis. Annals of Operations Research, v. 55, p. 229–322.
DE CARVALHO, F.A.T., VERDE, R. and LECHEVALLIER, Y. (1999). A dynamical clustering of symbolic objcts based on a context dependent proximity measure. In: Proceedings of the IX International Symposium on Applied Stochastic Models and Data analysis. Lisboa: Universidade de Lisboa, p. 237–242.
DIDAY, E. and SIMON, J.J. (1976): Clustering Analysis. In: Fu, K. S. (Eds): Digital Pattern Recognition. Springer-Verlag, Heidelberg, 47–94.
EL-SONBATY, Y. and ISMAIL, M.A. (1998): Fuzzy Clustering for Symbolic Data. IEEE Transactions on Fuzzy Systems 6, 195–204.
EVERITT, B. (2001): Cluster Analysis. Halsted, New York.
GORDON, A.D. (1999): Classification. Chapman and Hall/CRC, Boca Raton, Florida.
HUBERT, L. and ARABIE. P. (1985): Comparing Partitions. Journal of Classification, 2, 193–218.
RALAMBONDRAINY, H. (1995): A conceptual version of the k-means algorithm. Pattern Recognition Letters 16, 1147–1157.
SOUZA, R.M.C.R. and DE CARVALHO, F.A.T. (2004): Clustering of interval data based on city-block distances. Pattern Recognition Letters, 25 (3), 353–365.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin · Heidelberg
About this paper
Cite this paper
de Souza, R.M.C.R., de Carvalho, F.d.A.T., Pizzato, D.F. (2006). A Dynamic Clustering Method for Mixed Feature-Type Symbolic Data. In: Batagelj, V., Bock, HH., Ferligoj, A., Žiberna, A. (eds) Data Science and Classification. Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-34416-0_22
Download citation
DOI: https://doi.org/10.1007/3-540-34416-0_22
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-34415-5
Online ISBN: 978-3-540-34416-2
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)