iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/3-540-34416-0_22
A Dynamic Clustering Method for Mixed Feature-Type Symbolic Data | SpringerLink
Skip to main content

A Dynamic Clustering Method for Mixed Feature-Type Symbolic Data

  • Conference paper
Data Science and Classification

Abstract

A dynamic clustering method for mixed feature-type symbolic data is presented. The proposed method needs a previous pre-processing step to transform Boolean symbolic data into modal symbolic data. The presented dynamic clustering method has then as input a set of vectors of modal symbolic data and furnishes a partition and a prototype to each class by optimizing an adequacy criterion based on a suitable squared Euclidean distance. To show the usefulness of this method, examples with symbolic data sets are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • BOCK, H.H. (2002): Clustering algorithms and kohonen maps for symbolic data. Proc. ICNCB, Osaka, 203–215. J. Jpn. Soc. Comp. Statistic, 15, 1–13.

    Google Scholar 

  • BOCK, H.H. and DIDAY, E. (2000): Analysis of Symbolic Data, Exploratory methods for extracting statistical information from complex data. Springer, Heidelberg.

    Google Scholar 

  • CHAVENT, M. and LECHEVALLIER, Y. (2002). Dynamical Clustering Algorithm of Interval Data: Optimization of an Adequacy Criterion Based on Hausdorff Distance. In: A. Sokolowski and H.-H. Bock (Eds.): Classification, Clustering and Data Analysis. Springer, Heidelberg, 53–59.

    Google Scholar 

  • CHAVENT, M., DE CARVALHO, F.A.T., LECHEVALLIER, Y. and VERDE, R. (2003). Trois nouvelles mthodes de classification automatique de données symboliques de type intervalle. Revue de Statistique Appliquée, v. LI, n. 4, p. 5–29.

    Google Scholar 

  • DE CARVALHO, F.A.T. (1995). Histograms in Symbolic Data Analysis. Annals of Operations Research, v. 55, p. 229–322.

    Article  Google Scholar 

  • DE CARVALHO, F.A.T., VERDE, R. and LECHEVALLIER, Y. (1999). A dynamical clustering of symbolic objcts based on a context dependent proximity measure. In: Proceedings of the IX International Symposium on Applied Stochastic Models and Data analysis. Lisboa: Universidade de Lisboa, p. 237–242.

    Google Scholar 

  • DIDAY, E. and SIMON, J.J. (1976): Clustering Analysis. In: Fu, K. S. (Eds): Digital Pattern Recognition. Springer-Verlag, Heidelberg, 47–94.

    Google Scholar 

  • EL-SONBATY, Y. and ISMAIL, M.A. (1998): Fuzzy Clustering for Symbolic Data. IEEE Transactions on Fuzzy Systems 6, 195–204.

    Article  Google Scholar 

  • EVERITT, B. (2001): Cluster Analysis. Halsted, New York.

    Google Scholar 

  • GORDON, A.D. (1999): Classification. Chapman and Hall/CRC, Boca Raton, Florida.

    MATH  Google Scholar 

  • HUBERT, L. and ARABIE. P. (1985): Comparing Partitions. Journal of Classification, 2, 193–218.

    Article  Google Scholar 

  • RALAMBONDRAINY, H. (1995): A conceptual version of the k-means algorithm. Pattern Recognition Letters 16, 1147–1157.

    Article  Google Scholar 

  • SOUZA, R.M.C.R. and DE CARVALHO, F.A.T. (2004): Clustering of interval data based on city-block distances. Pattern Recognition Letters, 25 (3), 353–365.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

de Souza, R.M.C.R., de Carvalho, F.d.A.T., Pizzato, D.F. (2006). A Dynamic Clustering Method for Mixed Feature-Type Symbolic Data. In: Batagelj, V., Bock, HH., Ferligoj, A., Žiberna, A. (eds) Data Science and Classification. Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-34416-0_22

Download citation

Publish with us

Policies and ethics